



# Полупромышленные и промышленные системы кондиционирования и отопления



# **HITACHI**

| Hitachi Cooling & Heating                                         | 5         |
|-------------------------------------------------------------------|-----------|
| Полупромышленные и мультизональ<br>системы кондиционирования      |           |
| Полупромышленное оборудование                                     |           |
| Серия Utopia Prime                                                |           |
| Серия IVX Prime и IVX Comfort                                     |           |
| Серия IVX Centrifugal                                             |           |
| Серия IVX ККБ                                                     |           |
| Комплект DX kit                                                   |           |
| Мультизональные системы Set Free                                  |           |
| Универсальные внутренние блоки .                                  |           |
| Системы управления                                                |           |
| тепловые насосы Yutαki                                            |           |
| On-line программа подбора систем о и ГВС на базе тепловых насосов | отопления |
| Инновационные тепловые насосы воздух/вода                         | 184       |
| Универсальные опции                                               |           |
| для всего модельного ряда Yutaki                                  | 190       |
| Yutaki S                                                          | 192       |
| Yutaki S Combi                                                    | 196       |
| Yutaki S80 и Yutaki S80 Combi                                     | 200       |
| Yutaki M                                                          | 204       |
| Yutaki H и Yutaki H Combi                                         | 208       |
| Yutampo                                                           | 214       |
| Чиллеры                                                           | 216       |





# Добро пожаловать в Hitachi Cooling & Heating





# Сертификация EUROVENT CERTITA **CERTIFICATION SAS**

#### **EUROVENT**

Все системы кондиционирования Hitachi сертифицированы независимой ассоциацией EUROVENT CERTITA CERTIFICATION SAS (Франция) — авторитетной европейской ассоциацией производителей климатической техники, лидером в сфере сертификации климатического оборудования. Она проводит добровольную независимую сертификацию систем кондиционирования и вентиляции воздуха. Наличие этого сертификата подтверждает завленные технические характеристики кондиционера, в том числе сезонную энергоэффективность.



CERTIFICATE (2) N° 14.11.001



Variable Refrigerant Flow / Débit de réfrigérant variable

This document is valid at the date of issue - Check the current validity on Document valable à la date d'émission - Vérifier la validité en cours sur : www.eurovent-certification.com

Participant/Titulaire

JOHNSON CONTROLS-HITACHI AIR CONDITIONING SPAIN S.A.U.
RONDA SHIMIZU /N - P.I. CAN TORRELLA
08233 VACARISSES (Barcelona), Spain

THIS CERTIFICATE HAS BEEN ISSUED ON 10/06/2024 THIS CERTIFICATE IS VALID UNTIL 30/09/2024

MANAGING BOARD MEMBER / MEMBRE DIRECTOIRE















В 1910 году Намихеи Одаира основал мастерскую по ремонту электродвигателей, а спустя некоторое время дал ей название **Hitachi**, что дословно переводится как «рассвет».

Это название отражает основную философию компании— оказание помощи людям и обществу через технологии. Приверженность таким целям помогла Hitachi стать одной из самых крупных корпораций в мире.

Намихеи Одаира, основатель **Hitachi Ltd.**, разработал знак Hitachi еще до основания компании в 1910 году. Он был уверен в том, что товарный знак будет отображением качества товара, и что с его помощью можно завоевать доверие потребителей.

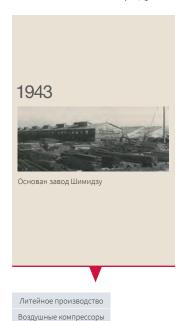


**Hitachi** находится в постоянном поиске и открывает все новые и новые технологические возможности. Пять процентов от общего мирового объема продаж вкладывается в научно исследовательские и опытно-конструкторские программы. Благодаря таким огромным инвестициям компания Hitachi смогла первой создать многие технические решения, получившие всеобщее мировое признание, например, спиральные и полугерметичные вин-

товые компрессоры. Оборудованные ими уникальные системы кондиционирования воздуха и водоохлаждающие установки — чиллеры, произвели переворот в области кондиционирования воздуха.

Разработка и конструирование изделия является непрерывным процессом. Приоритет всегда отдаётся применению самых современных технологий и экологически безопасных хладагентов.







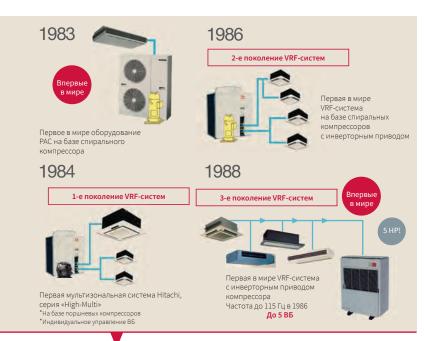



# История Hitachi







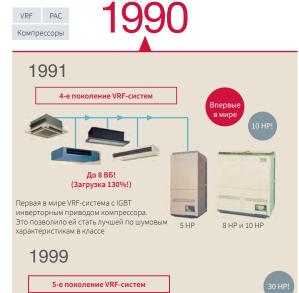

Холодильники Компрессоры для холодильных машин

туннельный вентилятор

Литейное производство










VRF PAC Компрессоры

11

VRF PAC



VRF-система, адаптированная

под R407C «SET FREE FSG»:

тепловой насос «SET FREE FXG»:

До 12 ВБ! (Загрузка 130%!)

с рекуперацией теплоты







микрокомпьютера

# Окомпании



НАРЕ, Испания



Hitachi Air Conditioning Products, Бразилия

Компании Johnson Controls, Hitachi Appliances, Inc. и Hitachi Ltd. 1 октября 2015 г. объявили о заключении соглашения о совместном предприятии и начале деятельности компании Johnson Controls-Hitachi Air Conditioning, предлагающей заказчикам полный спектр высококлассного оборудования и современных технологий для создания систем кондиционирования воздуха.

Штат созданной компании насчитывает около 14 тыс. сотрудников; в состав компании вошли 24 проектных, инженерных и производственных площадки, расположенные в странах Азии, Европы и Латинской Америки.

Совместное предприятие использует технологии, наработки и опыт обеих организаций, а также объединенную сбытовую сеть. Заказчикам по всему миру предлагается самый широкий в отрасли ассортимент оборудования для кондиционирования воздуха, среди которого высококлассные бытовые системы кондиционирования, передовые спиральные и винтовые компрессоры, а также решения Johnson Controls в области автоматизации инженерных систем.





Tsuchiura, Япония



Tochigi, Япония



Hitachi Co, Тайвань



НАРМ, Малайзия



ННАW (Wuhu), Китай



Hitachi Air Conditioning & Refrigerating, Китай



Hitachi Compressor Products, Китай



Hitachi Air Conditioning, Филлипины

Все заводы компании Hitochi имеют сертификаты, удостоверяющие соответствие системы управления качеством действующим международным стандартам (ISO 9001, ISO 14001). На предприятиях внедрена система строгого контроля качества продукции, предусматривающая многочисленные проверки.

























# Полупромышленные и мультизональные системы кондиционирования

Cooling & Heating



Англоязычная аббревиатура PAC расшифровывается как Package Air Conditioning — термин, которым обозначается широкая линейка полупромышленного и мультизонального климатического оборудования Hitachi класса «воздух/воздух».

Во всех наружных блоках оборудования РАС применяются спиральные компрессора с DC инверторным управлением, технологией, разработанной компанией Hitachi, что позволяет достигать высокого уровня комфорта в обслуживаемых помещениях и высокой энергоэффективности системы кондиционирования.

Внутренние блоки систем РАС являются универсальными и могут подключаться к наружным блокам полупромышленных и мультизональных систем. Они имеют свои индивидуальные пульты управления проводного и инфракрасного типа. В случае крупных объектов систему кондиционирования можно подключить к ВМЅ (система управления зданием) посредством протоколов KNX, BACnet, Modbus.

Благодаря широкому выбору типоразмеров обеспечивается максимальная гибкость при проектировании систем, а также другие дополнительные преимущества как для монтажных организаций, так и для конечных потребителей.



# Сводные таблицы

#### Наружные блоки полупромышленных систем

| Индекс прои     | зводительности, л.с. | 3   | 4    | 5    | 6    | 8    | 10   | 12   |
|-----------------|----------------------|-----|------|------|------|------|------|------|
| Холодопроиз     | водительность, кВт   | 7,1 | 10,0 | 12,5 | 14,0 | 20,0 | 25,0 | 30,0 |
| Теплопроизв     | одительность, кВт    | 8,0 | 11,2 | 14,0 | 16,0 | 22,4 | 28,0 | 33,5 |
| Utopia Prime    |                      |     |      |      |      |      |      |      |
|                 | RAS-2-3HVRC3         | 1-2 |      |      |      |      |      |      |
| 0               | RAS-4~6HVR(N)C2E     |     | 1-4  | 1-4  | 1-4  |      |      |      |
|                 | RAS-4~6HR(N)C2E      |     | 1-4  | 1-4  | 1-4  |      |      |      |
| IVX Prime, IVX  | Comfort              |     |      |      |      |      |      |      |
|                 | RAS-4~6HVR(N)P2E     |     | 1-4  | 1-4  | 1-4  |      |      |      |
| 0 0             | RAS-4~6HR(N)P2E      |     | 1-4  | 1-4  | 1-4  |      |      |      |
|                 | RAS-8~12HNC(E)       |     |      |      |      | 1-4  | 1-4  | 1-4  |
| ІVХ ККБ         |                      |     |      |      |      |      |      |      |
| 0               | RAS-4~6XHVNP1E       |     |      |      |      |      |      |      |
| 00              | RAS-4~10XHNP1E       |     |      |      |      |      |      |      |
| IVX Centrifugal |                      |     |      |      |      |      |      |      |
| - 10            | RASC-4~12HNPE        |     | 1-5  | 1-5  | 1-5  | 1-6  | 1-6  |      |

#### Наружные блоки мультизональных систем Set Free

| Индекс пр     | оизводительности, л.с.             | 4    | 5    | 6    | 8    | 10   | 12   | 14   | 16   | 18   | 20   | 22   | 24   | 26   | 28   | 30-40          | 42-54           | 56-72           | 74-96           |
|---------------|------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----------------|-----------------|-----------------|-----------------|
| Холодопрои    | зводительность, кВт                | 10,0 | 12,5 | 14,0 | 22,4 | 28,0 | 33,5 | 40,0 | 45,0 | 50,4 | 56,0 | 61,5 | 69,0 | 73,0 | 80,0 | 85,0-<br>112,0 | 118,0-<br>150,0 | 157,0-<br>201,0 | 207,0-<br>268,0 |
| Геплопроиз    | водительность, кВт                 | 11,2 | 14,0 | 16,0 | 25,0 | 31,5 | 37,5 | 45,0 | 50,0 | 56,0 | 63,0 | 69,0 | 77,5 | 82,5 | 90,0 | 95,0-<br>125,0 | 140,0-<br>165,0 | 176,0-<br>225,0 | 232,0-<br>305,0 |
| Set Free Mini |                                    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |                |                 |                 |                 |
| 01            | RAS-4~6FSVNME                      | 1-13 | 1–16 | 1-18 |      |      |      |      |      |      |      |      |      |      |      |                |                 |                 |                 |
|               | RAS-4~6FSNME                       | 1-13 | 1–16 | 1-18 |      |      |      |      |      |      |      |      |      |      |      |                |                 |                 |                 |
| 00            | RAS-8~12FSXNME                     |      |      |      | 1-26 | 1-32 | 1-39 |      |      |      |      |      |      |      |      |                |                 |                 |                 |
| Air365 Max    |                                    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |                |                 |                 |                 |
|               | RAS-8~24FSXNS2E<br>(базовые блоки) |      |      |      | 2–26 | 2-32 | 2-39 | 2-45 | 2-52 | 2-58 | 2-64 | 2-64 | 2-64 |      |      |                |                 |                 |                 |
|               | RAS-26~96FSXNS2E<br>(комбинации)   |      |      |      |      |      |      |      |      |      |      |      |      | 2-64 | 2-64 | 2-64           | 3-64            | 3-64            | 3-64            |
| Air365 Мах вы | сокоэффективная серия              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |                |                 |                 |                 |
|               | RAS-5~18FSXNP2E<br>(базовые блоки) |      | 2–16 | 2–19 | 2–26 | 2-32 | 2–39 | 2–45 | 2-52 | 2–58 |      |      |      |      |      |                |                 |                 |                 |
|               | RAS-20~54FSXNP2E (комбинации)      |      |      |      |      |      |      |      |      |      | 2-64 | 2-64 | 2-64 | 2-64 | 2-64 | 2-64           | 3-64            |                 |                 |

# Полупромышленные и мультизональные системы кондиционирования

#### Универсальные внутренние блоки

| Индекс г              | производительности, л.с.                       | 0,4 | 0,6 | 0,8 | 1,0 | 1,3 | 1,5 | 1,8 | 2,0 | 2,3 | 2,5 | 3,0 | 4,0  | 5,0  | 6,0  | 8,0  | 10,0 | 16,0 | 20,0 |
|-----------------------|------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|
| Совместно с системами | Номинальная холодо-<br>производительность, кВт |     |     | 2,0 | 2,5 | 3,2 | 3,6 | 4,5 | 5,0 | 5,1 | 5,6 | 7,1 | 10,0 | 12,5 | 14,0 | 20,0 | 25,0 |      |      |
| IVX                   | Номинальная тепло-<br>производительность, кВт  |     |     | 2,2 | 2,8 | 3,6 | 4,0 | 5,0 | 5,6 | 5,7 | 6,3 | 8,0 | 11,2 | 14,0 | 16,0 | 22,4 | 28,0 |      |      |
| Совместно с системами | Номинальная холодо-<br>производительность, кВт | 1,1 | 1,7 | 2,2 | 2,8 | 3,8 | 4,0 | 5,2 | 5,6 | 6,7 | 7,1 | 8,0 | 11,2 | 14,0 | 16,0 | 22,4 | 28,0 | 45,0 | 56,0 |
| Set Free              | Номинальная тепло-<br>производительность, кВт  | 1,3 | 1,9 | 2,5 | 3,2 | 4,2 | 4,8 | 5,6 | 6,3 | 7,5 | 8,5 | 9,0 | 12,5 | 16,0 | 18,0 | 25,4 | 31,5 | 50,0 | 63,0 |
|                       | RPK-0.4~4.0FSRM                                | *   | *   |     |     | **  |     | •   |     | •   |     |     |      |      |      |      |      |      |      |
| 4                     | RPK-0.4~1.5FSRHM<br>+EV-1.5N1                  | *   | *   |     |     | **  |     |     |     |     |     |     |      |      |      |      |      |      |      |
|                       | RCIM-0.4~2.5FSRE                               | *   | *   |     |     | ▼   |     | ▼   |     | ▼   |     |     |      |      |      |      |      |      |      |
|                       | RCI-1.0~6.0FSR                                 |     |     | •   |     | •   |     | •   |     | •   |     |     |      |      |      |      |      |      |      |
|                       | RCD-1.0~5.0FSR                                 |     |     |     |     | •   |     | •   |     | •   |     |     |      |      |      |      |      |      |      |
|                       | RPC-1.5~6.0FSR                                 |     |     |     |     | •   |     | ▼   |     | •   |     |     |      |      |      |      |      |      |      |
| NEW                   | RPIZ-0.8-2.5HNDTS1Q                            |     |     | *   | *   |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
|                       | RPIL-0.4~1.5FSRE                               | *   | *   |     |     | •   |     |     |     |     |     |     |      |      |      |      |      |      |      |
|                       | RPI-1.5~6.0FSRE                                |     |     |     |     | •   |     | ▼   |     | ▼   |     |     |      |      |      |      |      |      |      |
|                       | PRIH-4.0~6.0FSRE                               |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
|                       | RPI-8.0~20.0FSN3(P)E                           |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| 100 100               | RPF-1.0~2.5FSN2E                               |     |     | •   |     | ▼   |     | ▼   |     | ▼   |     |     |      |      |      |      |      |      |      |
|                       | RPFI-1.0~2.5FSN2E                              |     |     | •   |     | •   |     | •   |     | •   |     |     |      |      |      |      |      |      |      |
| ė ė ė                 | RWLT-3.0~10.0VN1E                              |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| 1111                  | RWHT-5.0VNF1E                                  |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |

Базовая модель.

, Путем настройки DIP-переключателей можно уменьшить производительность базовой модели. Например, производительность RCI-1,5FSR можно уменьшить с 1,5 до 1,3 л.с.

\* Внутренние блоки минимальной производительности 0,4 и 0,6 НР могут применяться только с наружными блоками Set Free.

Внутренние блоки с индексом 0,8 НР, производительность которых выставлена DIP-переключателем на 0,6 НР могут быть использованы только с наружными блоками Set Free.

\*\* Для внутренних блоков серии RPK-FSR(H)M, блок производительностью 1,3 HP получается путем увеличения производительности внутреннего блока мощностью 10 HP.

#### Вентиляционные агрегаты КРІ

| рептиляці          | IUHHBI       | z ai þ  | JEI a      | I DI I    | \PI     |          |        |      |
|--------------------|--------------|---------|------------|-----------|---------|----------|--------|------|
| Расход воздуха     | , м³/час     | 250     | 500        | 800       | 1000    | 1500     | 2000   | 3000 |
| Рекуперативные вен | тиляционные  | установ | ки КРІ     |           |         |          |        |      |
| e 5. 🚮             | KPI-E4E      |         |            |           |         |          |        |      |
| Рекуперативные вен | тиляционые у | становк | и Active I | КРІ с бло | ком пря | мого исг | арения |      |
|                    | KPI-X4E      |         |            |           |         |          |        |      |

Производительность в режимах нагрева и охлаждения рассчитана для 100% комбинации блоков по производительности и основана на стандарте EN14511.

Холодопроизводительность приведена при температуре воздуха в помещении 27 °C (19 °C по ВТ), темп. наружного воздуха 35 °C; длина труб холодильного контура 7,5 м; перепад высот между блоками 0 м.

Теплопроизводительность приведена при температуре воздуха в помещении 20°C, темп. наружного воздуха 7°C (6°C по ВТ); длина труб холодильного контура 7,5 м; перепад высот между блоками 0 м.



# **HITACHI**

# Полупромышленное оборудование

Cooling & Heating



Наружные блоки серии Utopia Prime, IVX Prime и IVX Comfort, отличающиеся высокой производительностью, эффективностью и надежностью, предназначены для обслуживания небольших зданий и торговых помещений, в которых требуется интеллектуальный контрольмикроклимата.

В серию входят наружные блоки различных моделей: Utopia Prime, IVX Prime, IVX Comfort, IVX ККБ и IVX Centrifugal. Широкий выбор моделей открывает большие возможности для проектирования системы кондиционирования, оптимально соответствующей предъявляемым требованиям.

Наружные блоки серий IVX Prime и IVX Comfort отличаются переменным расходом хладагента и независимым управлением каждого внутреннего блока, при этом стомость ниже стоимости аналогичных VRF-систем. Диапазон производительности весьма широк и составляет от 10 до 30 кВт.

Блоки IVX Centrifugal, оснащенные центробежными вентиляторами с технологией DC Inverter, предназначены для внутренней установки в тех случаях, когда невозможна установка снаружи здания.

Совместно с наружными блоками полупромышленной серии используются те же универсальные внутренние блоки, что и для серии Set Free, благодаря чему при проектировании системы больше не нужно беспокоиться о совместимости внутренних блоков. Наружные блоки отличаются высокой эффективностью и надежностью.



Utopia Prime,
IVX Prime,
IVX Comfort,
IVX Centrifugal
хладагент R410A или R32



# **UTOPIA PRIME**



R32 XЛадагент

2 – 3 HP



**R**410A Хладагент R32

### **IVX PRIME**





4-6 HP

# **IVX COMFORT**



8-12 HP

# IVX CENTRIFUGAL



4-10 HP

# Гибкость применений

Серия Prime — это эксклюзивное решение, предлагающее до сих пор невиданную комбинацию преимуществ:

- высокий уровень производительности;
- множество комбинаций внутренних блоков;
- большие длины трасс и возможность установки внутри помещений.

Может вписаться в любые ваши проекты, с самыми строгими требованиями.



5

составляющих успеха

#### ХЛАДАГЕНТ

Оборудование доступно в двух версиях: на хладагенте R32 и хладагенте R410A.

Вы можете использовать более экологичный хладагент при наличии особых требований на объекте

#### ЭНЕРГО-ЭФФЕКТИВНОСТЬ

2 уровня эффективности.

Используйте Utopia Prime в случаях, когда требуется высокая эффективность и IVX Prime когда не хотите ограничивать себя в выборе комбинаций

#### ВНУТРЕННИЕ БЛОКИ

Широкая линейка внутренних блоков.

Универсальные внутренние блоки для PAC и VRF

#### СИСТЕМЫ УПРАВЛЕНИЯ

Широкий выбор систем управления.

Оборудование серии Prime совместимо со всеми типами контроллеров H-link II: индивидуальные, центральные и шлюзы для интеграции в BMS

6 HP

#### **MONO-MULTI**

#### Monozone и multizone.

Оборудование серии Prime идеально справится с задачей кондиционирования если необходима одновременная работа внутренних блоков по схемам mono, twin, triple и double twin, а так же позволит осуществлять индивидуальное управление работой внутренних блоков (до четырех помещений) при использовании наружных блоков IVX

| Ut    | opia Prime  | 2 HP | 2.5 HP | 3 HP | 4 HP  | 5 HP |
|-------|-------------|------|--------|------|-------|------|
| D22   | Однофазный  | •    | •      |      |       | •    |
| R32   | Трехфазный  |      |        |      | •     |      |
| D4104 | Однофазный  |      |        |      |       | •    |
| R410A | Трехфазный  |      |        |      |       |      |
| ľ     | IVX Prime   |      | 4 HP   | 5 HP | 6 HP  |      |
| R32   | Однофазный  |      | •      |      | •     |      |
| K3Z   | Трехфазный  |      | •      |      |       |      |
| D4104 | Однофазный  |      | •      |      |       |      |
| R410A | Трехфазный  |      | •      | •    | •     |      |
| IV    | IVX Comfort |      | 10     | НР   | 12 HP |      |

**R**410A Хладагент



Трехфазный





Utopia Prime 4–6 HP



IVX Prime 4-6 HP



IVX Comfort 8-12 HP



#### Основные показатели

#### 2-6 HP (Prime) и 8-12 (IVX Comfort)

Широкий диапазон производительностей в однофазном и трехфазном исполнениях.

SEER до 8,35; SCOP до 7,45

# Загрузка наружного блока внутренними от **90** до **115**%

В тех случаях, когда внутренние блоки редко используются одновременно, выгодно использовать системы с загрузкой наружного блока до 115%.

#### Длина трубопровода до <mark>85</mark> м

Широкие возможности для использования в проектах с большой удаленностью внутренних и наружного блоков. Расстояние между внутренним и наружным блоком может достигать 85 м для серии PRIME и 100 м для серии IVX Comfort, а перепад высот 30 м.

#### Напорность вентилятора наружного блока 30 Па (Prime)

Возможна установка наружных блоков в нишах, за решетками, либо можно отвести воздушный поток через воздуховод.

#### Нагрев при температурах от -20 °C Охлаждение при температурах до -15 °C

Широкий рабочий диапазон температур по наружному воздуху позволяет успешно обслуживать объекты, находящиеся в разных климатических зонах.

# Более <mark>60</mark> моделей внутренних блоков

Возможно использование любых универсальных внутренних блоков серии System Free: канальных (низкопрофильных, средне и высоконапорных), кассетных (2-поточных, 4-поточных стандартных и 600×600), напольных, подпотолочных, настенных. Так же возможно использование вентиляционных установок с рекуперацией тепла как со встроенным фреоновым теплообменником, так и без него.

#### От 1 до 4 помещений

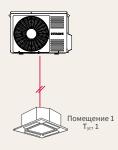
Оборудование серии Prime может обслуживать малые однообъемные помещения (небольшие магазины), большие однообъемные помещения (магазины средних размеров), а так же до 4 помещений с индивидуальным регулированием (небольшие офисы).



# Оптимально для любых проектов

Не все проекты имеют одинаковые требования, поэтому сложно решать различные задачи с помощью одной серии продуктов.

#### Одно небольшое помещение


#### Требования к системе

Поддержание равномерной температуры в помещении среднего и большого размера.



#### Рекомендуемый тип установки

Моносплит система. Один внутренний блок может обеспечить охлаждение и обогрев всего помещения.



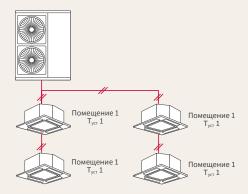
#### Рекомендуемый продукт

Моносплит система на базе Utopia Prime.

#### Преимущества выбора этого продукта

- Комфортные параметры воздуха в помещение могут быть гарантированы при использовании системы на базе одного внутреннего и одного наружного блоков.
- Мощность систем Utopia Prime позволяет обеспечить охлаждение и обогрев всего помещения.
- Самое экономичное решение на базе полупромышленного оборудования Utopia Prime.

#### Одно большое помещение


#### Требования к системе

Равномерное и стабильное поддержание температуры воздуха в помещении большой площади. Площадь помещения значительно больше, чем в первом случае. Приоритетными являются эффективность и стоимость оборудования.



#### Рекомендуемый тип установки

Система, подключенная по схемам TWIN, TRIPLE, DOUBLE TWIN (одновременная работа с одинаковой уставкой). Для обеспечения однородности температуры в помещении требуется несколько внутренних блоков:.



#### Рекомендуемый продукт

Синхронная система Utopia Prime (энергоэффективность и низкие первоначальные капитальные затраты). Все внутренние блоки подключены к одному наружному блоку, одновременно включаются/выключаются и работают в одном режиме.

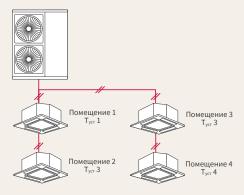
#### Преимущества выбора этого продукта

- Равномерное воздухораспределение гарантировано за счет применения нескольких внутренних блоков, установленных в разных частях помещения.
- Равномерное распределение температур гарантировано за счет одновременной работы всех внутренних блоков.
- Данная схема наиболее экономична по сравнению с другими (несколько моносплит систем, мини VRF). Это наиболее энергоэффективное решение, поскольку система включается, только тогда, когда требуется работа всех внутренних блоков.

Серия Prime является идеальным решением этих проблем: ее гибкость позволит вам выбрать продукт, который удовлетворит ваши требования к уровню комфорта и производительности.

#### Одно большое помещение

\_\_\_\_\_2 \_\_\_\_


#### Требования к системе

Равномерное и стабильное поддержание температуры воздуха в помещении большой площади. Площадь помещения значительно больше, чем в первом случае. Приоритетным является уровень комфорта.



#### Рекомендуемый тип установки

Система, подключенная по схемам TWIN, TRIPLE, DOUBLE TWIN (одновременная работа с одинаковой уставкой). Для обеспечения однородности температуры в помещении требуется несколько внутренних блоков.



#### Рекомендуемый продукт

Групповое управление внутренними блоками системы IVX Prime и IVX Comfort(для повышения уровня комфорта). Все внутренние блоки подключены к одному пульту дистанционного управления и имеют одинаковые настройки целевой температуры.

#### Преимущества выбора этого продукта

- Равномерное воздухораспределение гарантировано за счет применения нескольких внутренних блоков, установленных в разных частях помещения.
- Поддержание температуры в каждой зоне помещения осуществляется с высокой точностью, поскольку каждый внутренний блок может включаться/выключаться независимо. Температура постоянна во всем помещении, так как все внутренние блоки имеют одну и ту же целевую температуру.
- Загрузка наружного блока внутренними может быть более 100%, благодаря этому при увеличении нагрузки в одной зоне и снижению ее в другой, возможно повышение и понижение производительностей внутренних блоков относительно номинального режима работы.
- Отличный выбор для больших открытых пространств с неоднородной внутренней нагрузкой.

#### Несколько независимых помещений

#### Требования к системе

Поддержание комфортных параметров в различных помещениях на разных температурных уровнях. Приоритетным является уровень комфорта.



#### Рекомендуемый тип установки

Система с несколькими внутренними блоками с независимым управлением.

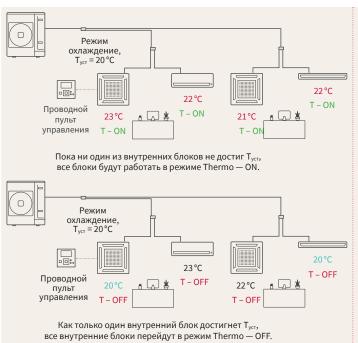


#### Рекомендуемый продукт

Система IVX Prime и IVX Comfort с индивидуальным управлением внутренними блоками. Каждый внутренний блок имеет свой пульт дистанционного управления и свои настройки целевой температуры.

#### Преимущества выбора этого продукта

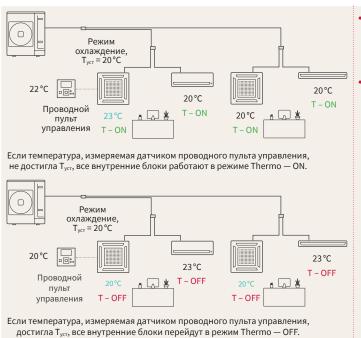
- Комфорт гарантирован в каждой из комнат, так как каждый внутренний блок может включаться / выключаться независимо друг от друга и иметь разные настройки целевой температуры.
- Это более экономичное решение, чем решения с применением мини-VRF, имеющиеся на рынке.




#### ВАРИАНТЫ УПРАВЛЕНИЯ

#### ПРЕИМУЩЕСТВА

# Вариант А: Нет приоритетной зоны (одновременная работа внутренних блоков, Utopia Prime)


Все внутренние блоки имеют одинаковый приоритет. Такой вариант управления хорош для больших однообъемных помещений (например, офисы).

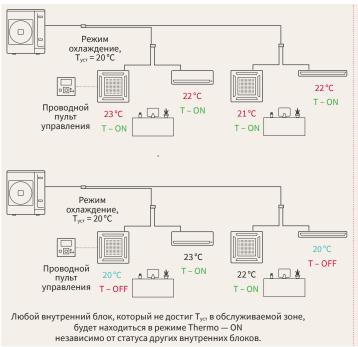


- Больше экономия энергии.
- Более стабильная температура в помещении.
- Нет приоритетных областей.

# Вариант Б: выбрана приоритетная зона (одновременная работа внутренних блоков, Utopia Prime)

Все внутренние блоки имеют одинаковый приоритет. Такой вариант управления хорош для больших однообъемных помещений (например, офисы).




- Может использоваться для кондиционирования больших помещений различного назначения, с зоной, где требуется более высокий уровень комфорта.
- Может использоваться для кондиционирования больших помещений, где есть зона с изменяющейся тепловой нагрузкой, критично влияющей на уровень комфорта в ней.

#### ВАРИАНТЫ УПРАВЛЕНИЯ

#### ПРЕИМУЩЕСТВА

# Вариант C: индивидуальное управление (IVX Prime / IVX Comfort)

Все внутренние блоки будут работать до тех пор, пока не достигнут температуры, заданной на проводном пульте управления, установленном в системе. Для IVX Prime может использоваться один ПДУ для всей системы. Каждый блок будет работать независимо, переключение режимов Thermo-ON/OFF будет происходить в зависимости от тепловой нагрузки в каждой обслуживаемой зоне.



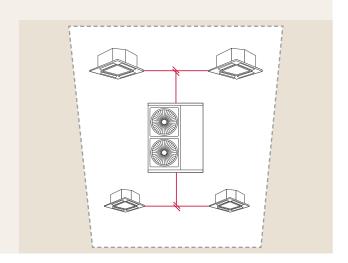
- Оптимально для следующих помещений:
  - с большой неравномерностью нагрузок;
  - с большой площадью остекления.



27

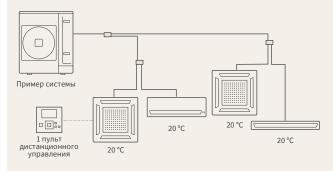
Полупромышленные и мультизональные системы кондиционирования



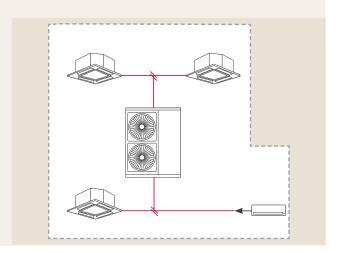

# Особенности и преимущества

#### Гибкость выбора внутреннего блока: типоразмер

• Внутренние блоки производительностью от 0.8 до 6 НР


| 010,0 д0 0111                                    |     |     |     |     |     |     |     |     |     |     |
|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Максимальная<br>мощность ВБ<br>в системе, НР     | 0,8 | 1,0 | 1,3 | 1,5 | 1,8 | 2,0 | 2,3 | 2,5 | 3,0 | 4,0 |
| Минимальная<br>мощность ВБ<br>в системе, НР      |     | 0   | ,8  |     |     | 1,0 |     | 1   | ,3  | 1,5 |
| Разность мощностей между большим и малым блоками | 0   | 0,2 | 0,5 | 0,7 | 0,8 | 1,0 | 1,3 | 1,2 | 1,7 | 2,5 |

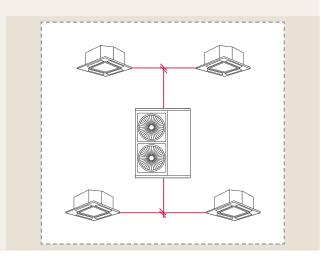
- Равномерное распределение температур и потоков
- Высокий уровень комфорта.




#### Гибкость выбора внутреннего блока: тип блока

• В одной системе можно использовать разные типы внутренних блоков, выбирая тот, который лучше всего подходит для конкретного проекта.




- Равномерное распределение температур и потоков воздуха.
- Высокий уровень комфорта.



#### Гибкость выбора внутреннего блока: комбинации

|        | 2 HP | 2.5 HP | 3 HP | 4 HP | 5 HP | 6 HP |
|--------|------|--------|------|------|------|------|
| Mono   | •    | •      |      |      |      |      |
| Twin   |      |        | •    | •    | •    | •    |
| Triple |      |        |      | •    | •    |      |
| Quad   |      |        |      | •    | •    |      |

- Равномерное воздухораспределение.
- Отсутствие температурного зонирования.





# Utopia Prime









Кондиционирование и отопление больших помещений с возможностью использования схем MONO, TWIN, TRIPLE и DOUBLE TWIN, а также выбора холодильного агента R410A или R32.



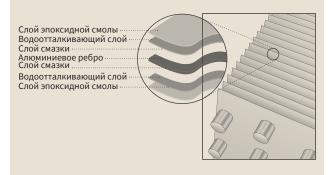




NEW блоки на 2 и 2.5 HP!

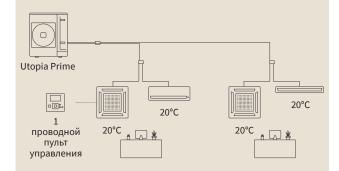
#### Общие внутренние блоки для PAC и VRF

Utopia Prime использует внутренние блоки System Free. Таким образом вы можете использовать все широкие возможности и функции данного типа внутренних блоков.


В одной системе могут использоваться разные типы внутренних блоков.

#### Гибкость монтажа

Наружные блоки производительностью от 4 до 6 л.с. могут использоваться в составе схем TWIN, TRIPLE и DOUBLE TWIN, причем для составления этих схем можно использовать блоки, работающие с хладагентом R410A и R32. Вентиляторы наружных блоков имеют напор до 30 Па, что позволяет устанавливать их на балконах за декоративными решетками.


#### Усиленная антикоррозионная защита

Благодаря трехслойному покрытию ребер теплообменника, серия Prime имеет лучшую защиту для установки в агрессивных средах.



#### Обновленное управление для большей энергоэффективности

Наружный блок начнет работу только если охлаждение или нагрев будет требоваться всем четырем внутренним блокам. Он отключится сразу, как только один внутренний блок достигнет требуемой температуры в своей зоне.



#### Широкий температурный диапазон работы

Utopia Prime сохраняет работоспособность при температурах: до -20°C в режиме нагрева и от −15°C до +46°C в режиме охлаждения. Характеристики оборудования позволяют ему оптимально поддерживать комфортные условия круглый год.



#### Наружные блоки

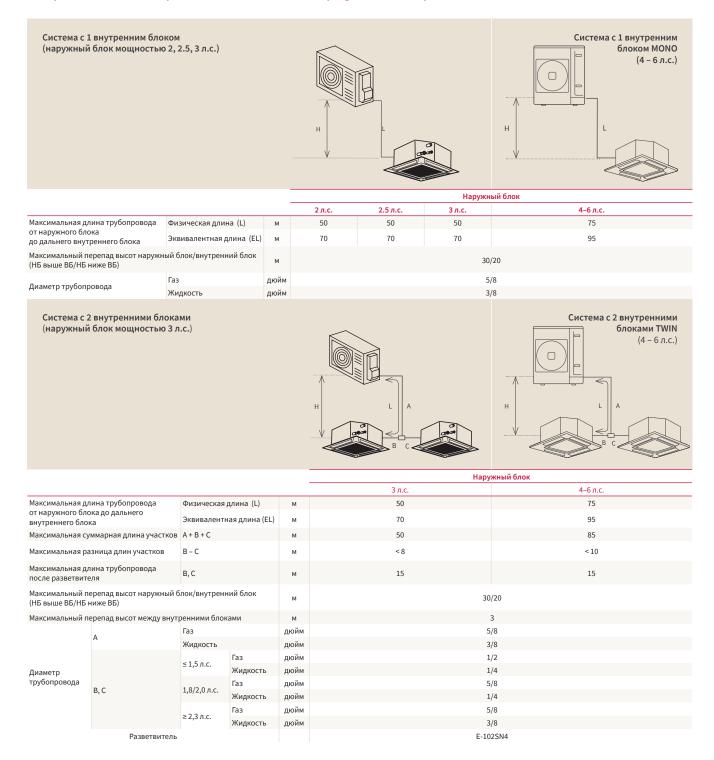


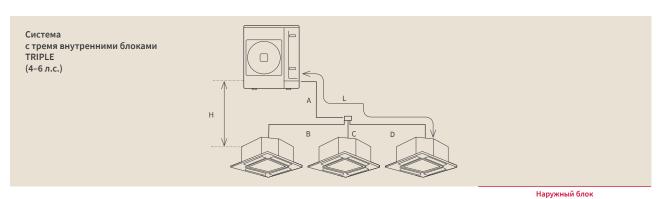




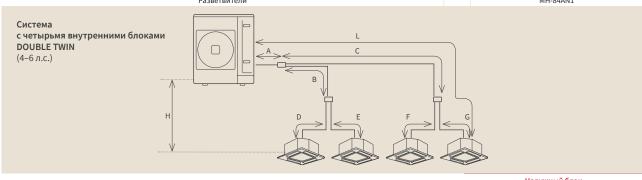


RAS-4H(V)RC2E RAS-5H(V)RC2E RAS-6H(V)RC2E RAS-4H(V)NC2E RAS-5H(V)NC2E RAS-6H(V)NC2E


# Utopia Prime


|                                                                     |                 |                 |                   | Хладаг          | ент R32           |                            |                   | У                     | (ладагент R410                | A                 |  |
|---------------------------------------------------------------------|-----------------|-----------------|-------------------|-----------------|-------------------|----------------------------|-------------------|-----------------------|-------------------------------|-------------------|--|
|                                                                     |                 | RAS-<br>2HVRC3* | RAS-<br>2.5HVRC3* | RAS-<br>3HVRC3* | RAS-4H(V)<br>RC2E | RAS-5H(V)<br>RC2E          | RAS-6H(V)<br>RC2E | RAS-4H(V)<br>NC2E     | RAS-5H(V)<br>NC2E             | RAS-6H(V)<br>NC2E |  |
|                                                                     | Ед. изм.        | 2 л.с.          | 2.5 л.с.          | 3 л.с.          | 4 л.с.            | 5 л.с.                     | 6 л.с.            | 4 л.с.                | 5 л.с.                        | 6 л.с.            |  |
| Производительность, охлаждение                                      |                 |                 |                   |                 |                   |                            |                   |                       |                               |                   |  |
| Производительность                                                  | кВт             | 5,0             | 5,6               | 7,1             | 10,00             | 11,90                      | 14,00             | 10,00                 | 11,90                         | 14,00             |  |
| Потребляемая мощность                                               | кВт             | 1,20            | 1,31              | 1,80            | 2,56              | 3,38                       | 4,32              | 2,86                  | 3,78                          | 4,91              |  |
| Коэффициент энергоэффективно                                        | сти EER         | 4,20            | 4,30              | 3,90            | 3,90              | 3,52                       | 3,24              | 3,50                  | 3,15                          | 2,85              |  |
| Коэффициент сезонной<br>энергоэффективности SEER 1ф/30              | ф               | 7,40/—          | 7,40/—            | 7,40/—          | 6,93/6,62         | 6,60/6,37                  | 7,35/7,25         | 6,69/6,72             | 6,35/7,67                     | 7,01/6,92         |  |
| Класс сезонной энергоэффективн                                      | ности           | A++             | A++               | A++             | A++               | A++                        | _                 | A++                   | A++                           | _                 |  |
| Гарантированный диапазон<br>рабочих температур<br>наружного воздуха | °C (CT)         |                 | -5 (-15)+52       |                 |                   |                            | -15.              | +46                   |                               |                   |  |
| Производительность, нагрев                                          |                 |                 |                   |                 |                   |                            |                   |                       |                               |                   |  |
| Производительность                                                  | кВт             | 5,0             | 5,6               | 7,1             | 11,20             | 14,00                      | 16,00             | 11,20                 | 14,00                         | 16,00             |  |
| Потребляемая мощность                                               | кВт             | 1,18            | 1,36              | 1,64            | 2,65              | 3,52                       | 3,64              | 2,60                  | 3,52                          | 3,64              |  |
| Коэффициент энергоэффективно                                        | сти СОР         | 4,20            | 4,10              | 4,40            | 4,23              | 3,98                       | 4,40              | 4,30                  | 3,98                          | 4,40              |  |
| Коэффициент сезонной<br>энергоэффективности SCOP 1ф/3               | ф               | 4,30/—          | 4,20/—            | 4,30/—          | 4,36/4,36         | 4,26/4,25                  | 4,73/4,73         | 4,40/4,40             | 4,24/4,24                     | 4,71/4,71         |  |
| Класс сезонной энергоэффективн                                      | ности           | A+              | A+                | A+              | A+                | A+                         | _                 | A+                    | A+                            | _                 |  |
| Гарантированный диапазон<br>рабочих температур наружного<br>воздуха | °C (MT)         |                 | -25 +15           |                 |                   |                            | -20 .             | +18                   |                               |                   |  |
| Наружный блок                                                       |                 |                 |                   |                 |                   |                            |                   |                       |                               |                   |  |
| Уровень шума (охлаждение)                                           | дБ(А)           | 45              | 45                | 52              | 54                | 54                         | 56                | 5                     | i4                            | 56                |  |
| Уровень шума (нагрев)                                               | дБ(А)           | 47              | 47                | 54              | 54                | 54                         | 56                | 5                     | 54                            |                   |  |
| Расход воздуха<br>(охлаждение / нагрев)                             | м³/ч            | 2754/2754       | 2754/2754         | 2982/3420       |                   |                            | 48                | 300                   |                               |                   |  |
| Размеры (Д×В× Г)                                                    | ММ              | 7               | 799 × 629 × 30    | 0               |                   |                            | 1140 × 9          | 950 × 370             |                               |                   |  |
| Вес (нетто) 1ф/3ф                                                   | КГ              | 40/—            | 40/—              | 43/—            |                   |                            | 84                | /86                   |                               |                   |  |
| Мин. мощ. подкл. ВБ                                                 | л.с.            | _               | _                 | _               |                   |                            | 0                 | ,8                    |                               |                   |  |
| Количество подключаемых ВБ (мі                                      | ин-макс)        | 1               | 1                 | 2               |                   |                            | 1                 | -4                    |                               |                   |  |
| Загрузка НБ (мин–макс)                                              | %               | _               | _                 | _               |                   |                            | 90-               | -115                  |                               |                   |  |
| Компрессор                                                          | _               | _               | -                 | _               |                   |                            | Ротаці            | ионный                |                               |                   |  |
| Параметры трубопровода, хладагент                                   |                 |                 |                   |                 |                   |                            |                   |                       |                               |                   |  |
| Диаметр труб (жидкость / газ)                                       | мм<br>(дюйм)    | 6,35 (¹/₄) /    | 12,70 (1/2)       |                 | 9,52 (3/8) /      | ′ 15,88 (⁵/ <sub>8</sub> ) |                   | 9,5                   | 52 (³/ <sub>8</sub> ) / 15,88 | (5/8)             |  |
| Мин. длина фреонопровода                                            | М               | не              | ет ограничен      | ий              |                   | 5                          |                   |                       | 5                             |                   |  |
| Макс. длина фреонопровода/<br>дозаправки                            | м / г/м         | 50              | 50                | 50              |                   | 75/45                      |                   |                       | 75/60                         |                   |  |
| Макс. длина фреонопровода<br>без дозаправки                         | М               | 30              | 30                | 30              |                   | 20                         |                   |                       | 20                            |                   |  |
| Заводская заправка                                                  | КГ              | 1,3             | 1,3               | 1,8             |                   | 3,0                        |                   |                       | 3,2                           |                   |  |
| Перепад высот<br>(НБ выше/НБ ниже)                                  | М               | 30/20           | 30/20             | 30/20           |                   | 30/20                      |                   | 30/20                 |                               |                   |  |
| Хладагент                                                           |                 | R32             | R32               | R32             |                   | R32                        |                   |                       | R410A                         |                   |  |
| Электрические параметры                                             |                 |                 | ,                 |                 |                   |                            |                   |                       |                               |                   |  |
| Электропитание                                                      | В/ф/Гц          |                 | 230/1/50          |                 | 230/              | /1/50 или 400,             | /3/50             | 230/1/50 или 400/3/50 |                               |                   |  |
| Макс. потр. ток 1ф/3ф                                               | Α               | 12,5/—          | 12,5/—            | 16,5/—          |                   | 22,5/15,0                  |                   |                       | 22,5/15,0                     |                   |  |
| Кабель электропитания 1ф/3ф                                         | MM <sup>2</sup> |                 | 3×2,5/—           |                 | 3×6,0/5×4,0       |                            |                   |                       | 3×6,0/5×4,0                   |                   |  |
| Межблочный кабель                                                   | MM <sup>2</sup> |                 | 2×0,75            |                 |                   | 2×0,75                     |                   |                       | 2×0,75                        |                   |  |

<sup>\*</sup>Специальная конфигурация для работы при низкой температуре окружающей среды (-15 °C) в режиме охлаждения.

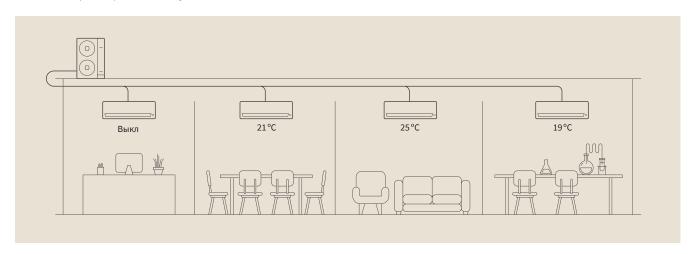



# Проектирование трубопроводов





|              |                                                                  |                  |              |      | паружный олок |
|--------------|------------------------------------------------------------------|------------------|--------------|------|---------------|
|              |                                                                  |                  |              |      | 4–6 л.с.      |
|              | Максимальная длина трубопровода                                  | Физическая       | длина (L)    | М    | 75            |
|              | от наружного блока до дальнего внутреннего блока                 | Эквивалентна     | я длина (EL) | М    | 95            |
|              | Максимальная суммарная длина участков                            | A+B-             | +C           | М    | 85            |
|              | Максимальная разница длин участков                               | B-C, B-I         | D, C-D       | М    | < 10          |
| N            | Лаксимальная длина трубопровода после разветвителя               | B, C, D          |              |      | 15            |
| M            | Максимальный перепад высот наружный блок/внутренний блок (НБ выш | е ВБ/НБ ниже ВБ) |              | М    | 30/20         |
|              | Максимальный перепад высот между внутренними блокам              | и                |              | М    | 3             |
|              | Максимальный перепад высот между внутренним блоком и разве       | твителем         |              | М    | 3             |
|              | A                                                                | Газ              |              | дюйм | 5/8           |
|              | A                                                                | Жидко            | ость         | дюйм | 3/8           |
|              |                                                                  | 415              | Газ          | дюйм | 1/2           |
| Диаметр      |                                                                  | ≤ 1,5 л.с.       | Жидкость     | дюйм | 1/4           |
| трубопровода | B, C, D                                                          | 1 0/2 0          | Газ          | дюйм | 5/8           |
|              | B, C, D                                                          | 1,8/2,0 л.с.     | Жидкость     | дюйм | 1/4           |
|              |                                                                  | >2255            | Газ          | дюйм | 5/8           |
|              |                                                                  | ≥ 2,3 л.с.       | Жидкость     | дюйм | 3/8           |
|              | Разветвители                                                     |                  |              |      | MH-84AN1      |




|              |                                                                 |                                                          |                                  |      | Наружный блок |
|--------------|-----------------------------------------------------------------|----------------------------------------------------------|----------------------------------|------|---------------|
|              |                                                                 |                                                          |                                  |      | 4–6 л.с.      |
|              | Максимальная длина трубопровода                                 | Физическая                                               | длина (L)                        | М    | 75            |
|              | от наружного блока до дальнего внутреннего блока                | Эквивалентна                                             | я длина (EL)                     | М    | 95            |
|              | Максимальная суммарная длина участков                           | A+B                                                      | +C                               | М    | 85            |
|              | Максимальная разница длин участков                              | (C+G)-<br>(B+E)-<br>(C+G)-<br>(C+G)-<br>(C+F)-<br>(C+F)- | (B+D)<br>(B+E)<br>(B+D)<br>(B+E) | М    | <10           |
| M            | аксимальная длина трубопровода после разветвителя               | (B+D, B+E, C+F, C+G)                                     |                                  |      | 15            |
| М            | аксимальный перепад высот наружный блок/внутренний блок (НБ выш | е ВБ/НБ ниже ВБ)                                         |                                  | М    | 30/20         |
|              | Максимальный перепад высот между внутренними блока              | ми                                                       |                                  | М    | 3             |
|              | Максимальный перепад высот между внутренним блоком и разве      | етвителем                                                |                                  | М    | 3             |
|              | А                                                               | Га                                                       | 3                                | дюйм | 5/8           |
|              |                                                                 | Жидк                                                     | Жидкость                         |      | 3/8           |
|              |                                                                 | ≤ 1.5 л.c.                                               | Газ                              | дюйм | 1/2           |
|              |                                                                 | S 1.5 /1.C.                                              | Жидкость                         | дюйм | 1/4           |
|              | B, C, D                                                         | 1,8/2,0 л.с.                                             | Газ                              | дюйм | 5/8           |
|              | 5, 6, 5                                                         | 1,0/2,071.0.                                             | Жидкость                         | дюйм | 1/4           |
| Диаметр      |                                                                 | ≥ 2,3 л.с.                                               | Газ                              | дюйм | 5/8           |
| трубопровода |                                                                 | £ 2,5 /1.c.                                              | Жидкость                         | дюйм | 3/8           |
|              |                                                                 | ≤ 1,5 л.с.                                               | Газ                              | дюйм | 1/2           |
|              |                                                                 | S 1,5 /1.C.                                              | Жидкость                         | дюйм | 1/4           |
|              | D, E, F, G                                                      | 1,8/2,0 л.с.                                             | Газ                              | дюйм | 5/8           |
|              | D, L, F, G                                                      | 1,6/2,0 /1.C.                                            | Жидкость                         | дюйм | 1/4           |
|              |                                                                 | ≥ 2,3 M                                                  | Газ                              | дюйм | 5/8           |
|              |                                                                 | ≤ 2,3 M                                                  | Жидкость                         | дюйм | 3/8           |
|              | Разветвители                                                    |                                                          |                                  |      | E-102SN4      |



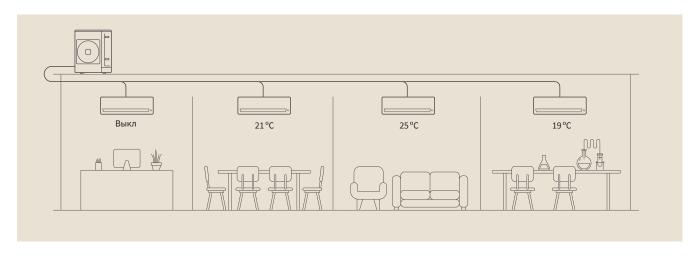
# IVX Prime концепция

• IVX Prime — первая линейка оборудования, в которой представлена концепция Micro VRF. Индивидуальное поддержание параметров максимум в 4-х независимых помещениях.



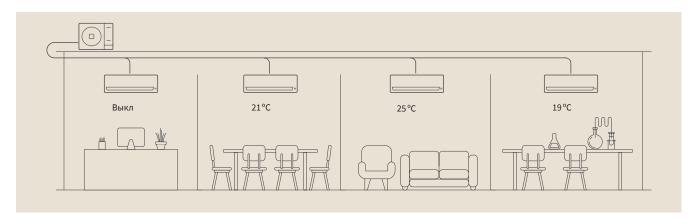
#### НЕБОЛЬШИЕ, НО ОСОБЕННЫЕ

IVX Prime — самые маленькие VRF системы на рынке, однако они обладают выдающимися характеристиками:


- отличные показатели производительности;
- компактные размеры;
- широкий ассортимент внутренних блоков (стандартные внутренние блоки VRF);
- большой диапазон регулирования;
- загрузка наружного блока от 90 до 115%;
- гибкость проектирования фреонопроводов;
- напор вентилятора наружного блока до 30 Па для установки за решетками с воздуховодами.

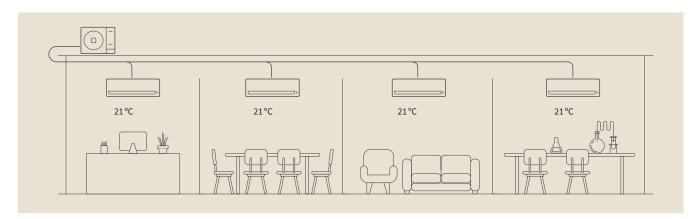
#### ЭКОЛОГИЧНОСТЬ

• IVX Prime — первый продукт Hitachi VRF, адаптированный для применения хладагента R32, и первый на рынке Micro VRF, использующий этот хладагент!


#### **IVX** Prime

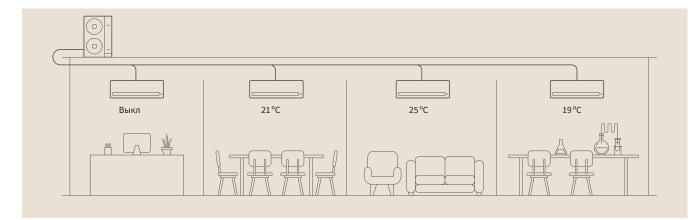
• IVX Prime — лучший выбор для небольших офисов, имеющих несколько помещений. Для подобных проектов может не хватать мощности бытовых мульти-сплит систем или длины их трубопроводов, TWIN системы не позволяют иметь индивидуальные настройки температуры, а вариант мини-VRF может быть слишком дорогим. Для них вам лучше всего подойдет IVX prime, который имеет уровень комфорта мини-VRF и стоимость PAC.




#### Бытовые мультисплит системы

- Производительность ниже, чем у микро VRF.
- Меньше длина трубопроводов.
- Не подходят для объектов среднего размера.




#### Системы типа TWIN (синхронное управление).

- Все внутренние блоки работают одновременно, с одинаковой уставкой и в одном режиме.
- Не могут гарантировать комфорт в разных комнатах.



#### Мини VRF

- Оборудование предназначено для более крупных объектов.
- Слишком высокая стоимость оборудования для обслуживания 4-х помещений.















## IVX Prime и IVX Comfort





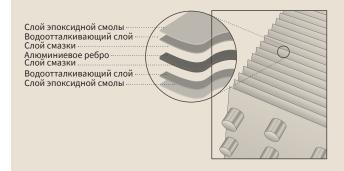






IVX Comfort (R410A)

# Микро VRF, использующие R32 — это действительно экологичный выбор


Холодильный агент R32 имеет массу преимуществ по сравнению с холодильным агентом R410A. Хотя оба холодильных агента не попадают под действие Киотского протокола о парниковых газах, R32 имеет меньший потенциал глобального потепления (GWP = 675) по сравнению с R410A (GWP = 2088). Дополнительно к этому заправка хладагентом R32 оборудования одинаковой производительности на 7–12% ниже, благодаря лучшим термодинамическим характеристикам. В итоге снижение негативного влияния на окружающую среду порядка 75%. Другим преимуществом R32 перед R410A является то, что он однокомпонентный — это упрощает обслуживание оборудования, а также разрешает повторное использование хладагента.

# Независимое поддержание комфортных параметров

Температурная уставка каждого внутреннего блока производится независимо. Также для каждого блока возможно ограничение температуры воздуха на выходе с целью повышения уровня комфорта.

# Усиленная антикоррозионная защита

Благодаря трехслойному покрытию ребер теплообменника, серия Prime имеет лучшую защиту для установки в агрессивных средах.



# Широкий температурный диапазон работы

Оборудование сохраняет работоспособность при температурах: до  $-20\,^{\circ}$ С в режиме нагрева и от  $-15\,^{\circ}$ С до  $+46\,^{\circ}$ С в режиме охлаждения. Характеристики оборудования позволяют ему оптимально поддерживать комфортные условия круглый год.

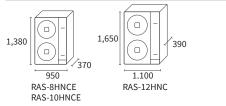


# IVX Prime

|                                                                    |                 |               | Хладагент <b>R</b> 32 |               |                                         | 10,00 12,50 2,81 3,83 3,56 3,26 7,04/6,72 7,80/7,67 A++ A+  46  11,20 14,00 2,56 3,39 4,38 4,13 4,64/4,64 4,68/4,68 A++ —  -18  54 54 70 0) 0)×370 6 |               |  |
|--------------------------------------------------------------------|-----------------|---------------|-----------------------|---------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
|                                                                    |                 | RAS-4H(V)RP2E | RAS-5H(V)RP2E         | RAS-6H(V)RP2E | RAS-4H(V)NP2E                           | RAS-5H(V)NP2E                                                                                                                                        | RAS-6H(V)NP2I |  |
|                                                                    | Ед. изм.        | 4 л.с.        | 5 л.с.                | 6 л.с.        | 4 л.с.                                  | 5 л.с.                                                                                                                                               | 6 л.с.        |  |
| Производительность, охлаждение                                     |                 | ,             |                       | ·             | *                                       |                                                                                                                                                      |               |  |
| Производительность                                                 | кВт             | 10,00         | 12,50                 | 14,00         | 10,00                                   | 12,50                                                                                                                                                | 14,00         |  |
| Потребляемая мощность                                              | кВт             | 2,51          | 3,42                  | 4,38          | 2,81                                    | 3,83                                                                                                                                                 | 4,91          |  |
| Коэффициент энергоэффективности EER                                |                 | 3,98          | 3,66                  | 3,24          | 3,56                                    | 3,26                                                                                                                                                 | 2,85          |  |
| Коэффициент сезонной энергоэффективности S                         | EER 1ф/3ф       | 7,31/6,96     | 8,35/8,20             | 7,35/7,25     | 7,04/6,72                               | 7,80/7,67                                                                                                                                            | 7,01/6,92     |  |
| Класс сезонной энергоэффективности                                 |                 | A++           | A+                    | -             | A++                                     | A+                                                                                                                                                   | -             |  |
| Гарантированный диапазон<br>рабочих температур наружного воздуха   | °C (CT)         |               |                       | -5            | +46                                     |                                                                                                                                                      |               |  |
| Производительность, нагрев                                         |                 |               |                       |               |                                         |                                                                                                                                                      |               |  |
| Производительность                                                 | кВт             | 11,20         | 14,00                 | 16,00         | 11,20                                   | 14,00                                                                                                                                                | 16,00         |  |
| Потребляемая мощность                                              | кВт             | 2,60          | 3,39                  | 3,64          | 2,56                                    | 3,39                                                                                                                                                 | 3,64          |  |
| Коэффициент энергоэффективности СОР                                |                 | 4,31          | 4,13                  | 4,40          | 4,38                                    | 4,13                                                                                                                                                 | 4,40          |  |
| Коэффициент сезонной энергоэффективности S                         | СОР 1ф/3ф       | 4,60/4,60     | 4,75/4,75             | 4,73/4,73     | 4,64/4,64                               | 4,68/4,68                                                                                                                                            | 4,71/4,71     |  |
| Класс сезонной энергоэффективности                                 |                 | A++           | _                     | _             | A++                                     | _                                                                                                                                                    | _             |  |
| Гарантированный диапазон рабочих темпера-<br>тур наружного воздуха | °C (MT)         |               |                       | -20.          | +18                                     |                                                                                                                                                      |               |  |
| Наружный блок                                                      |                 |               |                       |               |                                         |                                                                                                                                                      |               |  |
| Уровень шума (охлаждение)                                          | дБ(А)           | 54            | 5                     | 56            | 54                                      | î                                                                                                                                                    | 56            |  |
| Уровень шума (нагрев)                                              | дБ(А)           | 54            | 5                     | 66            | 54                                      | į                                                                                                                                                    | 56            |  |
| Уровень звуковой мощности                                          | дБ(А)           | 70            | 7                     | 72            | 70                                      | 7                                                                                                                                                    | 72            |  |
| Расход воздуха (охлаждение /нагрев)                                | м³/ч            |               |                       | 48            | 300                                     |                                                                                                                                                      |               |  |
| Размеры (Д×В× Г)                                                   | ММ              |               |                       | 1140×9        | 950×370                                 |                                                                                                                                                      |               |  |
| Вес (нетто) 1ф/3ф                                                  | КГ              |               |                       | 84            | /86                                     |                                                                                                                                                      |               |  |
| Мин. мощ. подкл. ВБ                                                | л.с.            |               |                       | 0             | ,8                                      |                                                                                                                                                      |               |  |
| Количество подключаемых ВБ (мин–макс)                              |                 |               |                       | 1             | -4                                      |                                                                                                                                                      |               |  |
| Загрузка НБ (мин–макс)                                             | %               |               |                       | 90-           | -115                                    |                                                                                                                                                      |               |  |
| Компрессор                                                         |                 |               |                       | Ротаці        | ионный                                  |                                                                                                                                                      |               |  |
| Параметры трубопровода, хладагент                                  |                 |               |                       |               |                                         |                                                                                                                                                      |               |  |
| Диаметр труб (жидкость / газ)                                      | мм<br>(дюйм)    |               |                       | 9,52 (3/8) /  | ′ 15,88 ( <sup>5</sup> / <sub>8</sub> ) |                                                                                                                                                      |               |  |
| Мин. длина фреонопровода                                           | М               |               |                       |               | 5                                       |                                                                                                                                                      |               |  |
| Макс. длина фреонопровода/ дозаправка                              | м/ г/м          |               | 75/45                 |               |                                         | 75/60                                                                                                                                                |               |  |
| Макс. длина фреонопровода без дозаправки                           | М               |               |                       | 2             | 20                                      |                                                                                                                                                      |               |  |
| Заводская заправка                                                 | КГ              |               | 3,0                   |               |                                         | 3,2                                                                                                                                                  |               |  |
| Перепад высот (НБ выше/НБ ниже)                                    | М               |               |                       | 30            | /20                                     |                                                                                                                                                      |               |  |
| Хладагент                                                          |                 |               | R32                   |               |                                         | R410A                                                                                                                                                |               |  |
| Электрические параметры                                            |                 |               |                       |               |                                         |                                                                                                                                                      |               |  |
| Электропитание                                                     | В/ф/Гц          |               |                       | 230/1/50 и    | ли 400/3/50                             |                                                                                                                                                      |               |  |
| Макс. потр. ток 1ф/3ф                                              | Α               |               |                       | 22,           | 5/15                                    |                                                                                                                                                      |               |  |
| Кабель электропитания 1ф/3ф                                        | MM <sup>2</sup> |               |                       | 3×6,0         | /5×4,0                                  |                                                                                                                                                      |               |  |
| Межблочный кабель                                                  | MM <sup>2</sup> |               |                       | 2×            | 0,75                                    |                                                                                                                                                      |               |  |

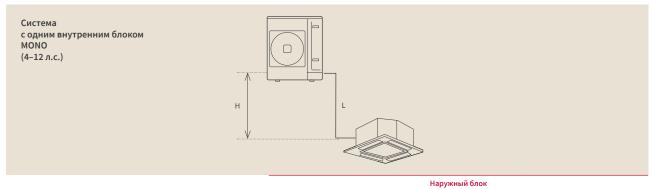
#### Наружные блоки



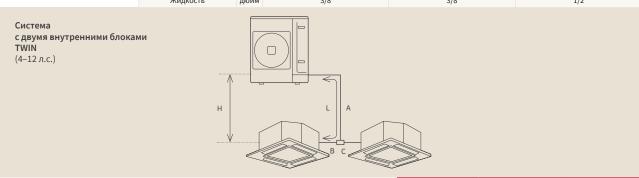

RAS-4H(V)NP2E RAS-5H(V)NP2E RAS-6H(V)NP2E RAS-4H(V)RP2E RAS-5H(V)RP2E RAS-6H(V)RP2E



## **IVX** Comfort

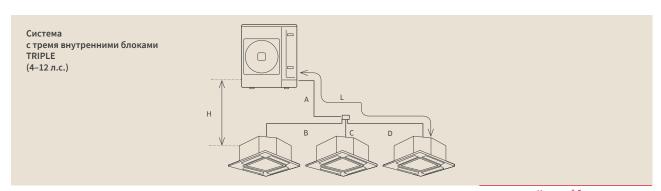

|                                                                  |                 |                       | Хладагент R410A       |                   |  |  |  |
|------------------------------------------------------------------|-----------------|-----------------------|-----------------------|-------------------|--|--|--|
|                                                                  |                 | RAS-8HNCE             | RAS-10HNCE            | RAS-12HNC         |  |  |  |
|                                                                  | Ед. изм.        | 8 л.с.                | 10 л.с.               | 12 л.с.           |  |  |  |
| Производительность, охлаждение                                   |                 |                       |                       |                   |  |  |  |
| Производительность (мин-макс)                                    | кВт             | 20,00 (8,0–22,4)      | 25,00 (10,00-28,00)   | 30,00 (11,2-33,5) |  |  |  |
| Потребляемая мощность                                            | кВт             | 5,69                  | 8,02                  | 11,05             |  |  |  |
| Коэффициент энергоэффективности EER                              |                 | 3,36                  | 3,02                  | 2,57              |  |  |  |
| Коэффициент сезонной энергоэффективности SEER                    |                 | 6,79                  | 6,61                  | 5,30              |  |  |  |
| Гарантированный диапазон рабочих температур<br>наружного воздуха | °C (CT)         |                       | -15+46                |                   |  |  |  |
| Производительность, нагрев                                       |                 |                       |                       |                   |  |  |  |
| Производительность (мин-макс)                                    | кВт             | 22,40 (6,3–28,0)      | 28,00 (8,0-35,0)      | 33,50 (9,0-37,5)  |  |  |  |
| Потребляемая мощность                                            | кВт             | 5,62                  | 7,45                  | 8,96              |  |  |  |
| Коэффициент энергоэффективности СОР                              |                 | 3,81                  | 3,63                  | 3,54              |  |  |  |
| Коэффициент сезонной энергоэффективности SCOP                    |                 | 4,19                  | 3,79                  | 3,66              |  |  |  |
| Гарантированный диапазон рабочих температур<br>наружного воздуха | °C (MT)         | -20+18                |                       |                   |  |  |  |
| Наружный блок                                                    |                 |                       |                       |                   |  |  |  |
| Уровень шума (охлаждение)                                        | дБ(А)           | 57                    | 58                    | 59                |  |  |  |
| Уровень шума (нагрев)                                            | дБ(А)           | 59                    | 60                    | 61                |  |  |  |
| Уровень звуковой мощности                                        | дБ(А)           | 76                    | 76                    | 77                |  |  |  |
| Расход воздуха (охлаждение)                                      | м³/ч            | 7620                  | 8040                  | 9780              |  |  |  |
| Габаритные размеры (В × Д × Г)                                   | MM              | 1380×9                | 50×370                | 1650×1100×390     |  |  |  |
| Вес (нетто)                                                      | КГ              | 136                   | 138                   | 168               |  |  |  |
| Мин мощ. подкл. ВБ                                               | л.с.            |                       | 1,8                   |                   |  |  |  |
| Количество подключаемых ВБ (мин–макс)                            |                 |                       | 1-4                   |                   |  |  |  |
| Загрузка НБ (мин-макс)                                           | %               |                       | 90-115                |                   |  |  |  |
| Компрессор                                                       |                 |                       | Спиральный            |                   |  |  |  |
| Параметры трубопровода, хладагент                                |                 |                       |                       |                   |  |  |  |
| Диаметр труб (жидкость / газ)                                    | мм<br>(дюйм)    | 9,52 (3/8) / 25,4 (1) | 12,7 (1/2) / 3        | 25,4 (1)          |  |  |  |
| Мин. длина фреонопровода                                         | М               |                       | 5                     |                   |  |  |  |
| Макс. длина фреонопровода/ дозаправка                            | м/ г/м          |                       | 100 / См. тех. докум. |                   |  |  |  |
| Макс. длина фреонопровода без дозаправки                         | М               |                       | 30                    |                   |  |  |  |
| Заводская заправка                                               | КГ              | 5,7                   | 6,2                   | 6,7               |  |  |  |
| Перепад высот (НБ выше/НБ ниже)                                  | М               |                       | 30/20                 |                   |  |  |  |
| Хладагент                                                        |                 |                       | R410A                 |                   |  |  |  |
| Электрические параметры                                          |                 |                       |                       |                   |  |  |  |
| Электропитание                                                   | В/ф/Гц          |                       | 400/3/50              |                   |  |  |  |
| Макс. потр. ток                                                  | Α               | 24,0                  | 24,0                  | 24,3              |  |  |  |
| Кабель электропитания                                            | MM <sup>2</sup> |                       | 5×6,0                 |                   |  |  |  |
| Межблочный кабель                                                | MM <sup>2</sup> |                       | 2×0,75                |                   |  |  |  |

#### Наружные блоки

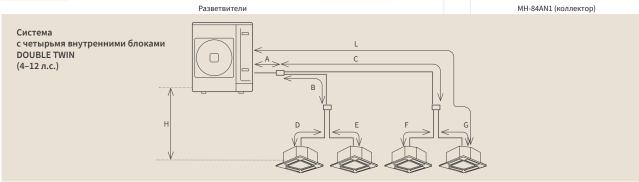



39

## Проектирование трубопроводов




|                                                                                        |                          |      |        | паружный олок |            |  |  |  |
|----------------------------------------------------------------------------------------|--------------------------|------|--------|---------------|------------|--|--|--|
|                                                                                        |                          |      | 4–6 лс | 8 л.с.        | 10–12 л.с. |  |  |  |
| Максимальная длина трубопровода                                                        | Физическая длина (L)     | М    | 75     | 100           |            |  |  |  |
| Максимальная длина трубопровода<br>от наружного блока<br>до дальнего внутреннего блока | Эквивалентная длина (EL) | М    | 95     | 125           |            |  |  |  |
| Максимальный перепад высот наружный блок/внутренний блок<br>(НБ выше ВБ/НБ ниже ВБ)    |                          | М    |        | 30/20         |            |  |  |  |
|                                                                                        | Газ                      | дюйм | 5/8    | 1             | 1          |  |  |  |
| Диаметр трубопровода                                                                   | Жидкость                 | дюйм | 3/8    | 3/8           | 1/2        |  |  |  |




|                                                                                  |                                                                        |              |                          |      | Наружный блок |          |            |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------|--------------------------|------|---------------|----------|------------|--|
|                                                                                  |                                                                        |              |                          |      | 4–6 л.с.      | 8 л.с.   | 10-12 л.с. |  |
| Мак                                                                              | симальная длина трубопровода                                           | Физи         | іческая длина (L)        | М    | 75            | 100      |            |  |
| от наружног                                                                      | симальная длина трубопровода<br>го блока до дальнего внутреннего блока | Эквива       | Эквивалентная длина (EL) |      | 95            | 1        | .25        |  |
| Максимальная суммарная длина участков                                            |                                                                        |              | A+B+C                    | М    | 85            | 100      | 115        |  |
| Максимальная разница длин участков В-С                                           |                                                                        | М            | <10                      | <    | :10           |          |            |  |
| Максимальная длина трубопровода после разветвителя                               |                                                                        |              | В, С                     |      | 15            |          | 15         |  |
| Максимальный перепад высот наружный блок/внутренний блок (НБ выше ВБ/НБ ниже ВБ) |                                                                        |              | М                        |      | 30/20         |          |            |  |
| Максимальный перепад высот между внутренними блоками                             |                                                                        |              | М                        | 3    |               | 10       |            |  |
|                                                                                  | A                                                                      | Газ          |                          | дюйм | 5/8           | 1        |            |  |
|                                                                                  | A                                                                      |              | Жидкость                 | дюйм | 3/8           | 3/8      | 1/2        |  |
|                                                                                  |                                                                        | ≤ 1,5 л.с.   | Газ                      | дюйм |               | 1/2      |            |  |
| Диаметр<br>рубопровода                                                           |                                                                        | ≥ 1,5 /1.C.  | Жидкость                 | дюйм |               | 1/4      |            |  |
| рубопровода                                                                      | B, C                                                                   | 1,8/2,0 л.с. | Газ                      | дюйм |               | 5/8      |            |  |
|                                                                                  | В, С                                                                   | 1,0/2,0 Л.С. | Жидкость                 | дюйм |               | 1/4      |            |  |
|                                                                                  | ≥ 2,3 л.с.                                                             | Газ          | дюйм                     |      | 5/8           |          |            |  |
|                                                                                  |                                                                        |              | Жидкость                 | дюйм |               | 3/8      |            |  |
|                                                                                  | Разветвитель                                                           |              |                          |      |               | E-102SN4 |            |  |





|                                                                  |                                                            |                          |               | _    | Наружный блок |          |            |
|------------------------------------------------------------------|------------------------------------------------------------|--------------------------|---------------|------|---------------|----------|------------|
|                                                                  |                                                            |                          |               |      | 4-6 л.с.      | 8 л.с.   | 10-12 л.с. |
|                                                                  | Максимальная длина трубопровода                            | Физическая               | длина (L)     | М    | 75            | 100      |            |
|                                                                  | от наружного блока до дальнего внутреннего блока           | Эквивалентная длина (EL) |               | М    | 95            | 12       | 25         |
|                                                                  | Максимальная суммарная длина участков                      | A+B                      | +C            | М    | 85            | 100      | 130        |
|                                                                  | Максимальная разница длин участков                         |                          | B-C, B-D, C-D |      | <10           | <        | 10         |
| Максимальная длина трубопровода после разветвителя               |                                                            | B, C, D                  |               | М    |               | 15       |            |
| Максимальный перепад высот наружный блок/внутренний блок (НБ выц |                                                            | це ВБ/НБ ниже ВБ)        |               | М    |               | 30/20    |            |
| Максимальный перепад высот между внутренними блокаг              |                                                            | и                        |               | М    | 3             | 10       |            |
|                                                                  | Максимальный перепад высот между внутренним блоком и разве | твителем                 |               | М    |               | 3        |            |
|                                                                  |                                                            | Газ                      |               | дюйм | 5/8           | 1        | 1          |
|                                                                  | A                                                          | Жидкость                 |               | дюйм | 3/8           | 3/8      | 1/2        |
|                                                                  |                                                            | 415                      | Газ           | дюйм | 1/2           | 3/8      | 1/2        |
| Диаметр                                                          |                                                            | ≤ 1,5 л.с.               | Жидкость      | дюйм | 1/4           |          |            |
| трубопровода                                                     | D.C.D.                                                     | 1 0/2 0                  | Газ           | дюйм | 5/8           |          |            |
|                                                                  | B, C, D                                                    | 1,8/2,0 л.с.             | Жидкость      | дюйм | 1/4           |          |            |
|                                                                  |                                                            | . 22                     | Газ           | дюйм |               | 5/8      |            |
|                                                                  |                                                            | ≥ 2,3 л.с.               | Жидкость      | дюйм |               | 3/8      |            |
|                                                                  | <b>D</b>                                                   |                          |               |      |               | 044444 / |            |



|                                                                    |                                                           |                                                          |                                     |      |          | Наружный бло | к         |  |
|--------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|-------------------------------------|------|----------|--------------|-----------|--|
|                                                                    |                                                           |                                                          |                                     |      | 4-6 л.с. | 8 л.с.       | 10-12 л.с |  |
|                                                                    | Максимальная длина трубопровода                           | Физическа                                                | ядлина (L)                          | М    | 75       | 100          |           |  |
| C                                                                  | от наружного блока до дальнего внутреннего блока          | Эквивалентн                                              | ая длина (EL)                       | М    | 95       |              | 125       |  |
|                                                                    | Максимальная суммарная длина участков                     | A+E                                                      | A+B+C                               |      | 85       | 100          | 145       |  |
|                                                                    | Максимальная разница длин участков                        | (C+G)-<br>(B+E)-<br>(C+G)-<br>(C+G)-<br>(C+F)-<br>(C+F)- | (B+D)<br>-(B+E)<br>-(B+D)<br>-(B+E) | М    | <10      |              |           |  |
| Mai                                                                | ксимальная длина трубопровода после разветвителя          | (B+D, B+E,                                               | C+F, C+G)                           | М    | 15       |              | 15        |  |
| Ma                                                                 | ксимальный перепад высот наружный блок/внутренний блок (H | Б выше ВБ/НБ ниже ВБ                                     |                                     | М    |          | 30/20        |           |  |
|                                                                    | Максимальный перепад высот между внутренними б            | блоками                                                  |                                     | М    | 3        | 10           |           |  |
| Максимальный перепад высот между внутренним блоком и разветвителем |                                                           |                                                          |                                     |      | 3        |              |           |  |
|                                                                    | Максимальный перепад высот между разветвителями           |                                                          |                                     |      | 3        |              |           |  |
|                                                                    | A                                                         | Газ дюї                                                  |                                     | дюйм | 5/8      | 1            |           |  |
|                                                                    | Α                                                         | Жидн                                                     | ость                                | дюйм | 3/8      | 3/8          | 1/2       |  |
|                                                                    |                                                           | ≤ 1.5 л.с.                                               | Газ                                 | дюйм |          | 1/2          |           |  |
|                                                                    |                                                           | _ 110 /1101                                              | Жидкость                            | дюйм |          | 1/4          |           |  |
|                                                                    | B, C, D                                                   | 1,8/2,0 л.с.                                             | Газ                                 | дюйм | 5/8      |              |           |  |
|                                                                    | 5, 3, 5                                                   | 1,0/2,0 /                                                | Жидкость                            | дюйм | 1/4      |              |           |  |
| Диаметр                                                            |                                                           | ≥ 2,3 л.с.                                               | Газ                                 | дюйм | 5/8      |              |           |  |
| рубопровода                                                        |                                                           | _ 2,0 mei                                                | Жидкость                            | дюйм | 3/8      |              |           |  |
|                                                                    |                                                           | ≤ 1,5 л.c.                                               | Газ                                 | дюйм |          | 1/2          |           |  |
|                                                                    |                                                           | _ 1,0 /11.01                                             | Жидкость                            | дюйм | 1/4      |              |           |  |
|                                                                    | D, E, F, G                                                | 1,8/2,0 л.с.                                             | Газ                                 | дюйм |          | 5/8          |           |  |
|                                                                    | 2,2,.,0                                                   | 2,0,2,071.0.                                             | Жидкость                            | дюйм | 1/4      |              |           |  |
|                                                                    |                                                           | ≥ 2,3 M                                                  | Газ                                 | дюйм | 5/8      |              |           |  |
|                                                                    |                                                           | = 2,5 M                                                  | Жидкость                            | дюйм | 3/8      |              |           |  |

Система с последовательно подключенными внутренними блоками (8–12 л.с.)

|                                                                                  |                                                            |                      |                          |      | Наруж  | ный блок   |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------|----------------------|--------------------------|------|--------|------------|--|
|                                                                                  |                                                            |                      |                          |      | 8 л.с. | 10-12 л.с. |  |
| Макси                                                                            | мальная длина трубопровода                                 |                      | Физическая длина (L)     | М    | 100    |            |  |
| от наружного                                                                     | мальная длина трубопровода<br>блока до дальнего внутреннег | о блока              | Эквивалентная длина (EL) | М    | 125    |            |  |
| Максимальная длина                                                               | а трубопровода от первого раз                              | ветвителя до дальнег | о внутренного блока (L2) | М    | 15     | 25         |  |
| Максимальная длина трубопровода между разветвителем и внутренним блоком (L3)     |                                                            |                      | М                        | 10   | 15     |            |  |
| Максимальная суммарная длина участков $L4 + (L3_1 + L3_2 + L3_3 + L3_4)$         |                                                            |                      |                          | М    | 100    | 145        |  |
| Максимальный перепад высот наружный блок/внутренний блок (НБ выше ВБ/НБ ниже ВБ) |                                                            |                      |                          |      | 3      | 80/20      |  |
| Максимальный перепад высот между внутренними блоками                             |                                                            |                      |                          |      | 10     |            |  |
| Максимальный перепад высот между внутренним блоком и разветвителем               |                                                            |                      |                          | М    |        | 3          |  |
|                                                                                  | Максимальный перепад высо                                  | т между разветвителя | ми                       | М    |        | 3          |  |
|                                                                                  | Магистральная труба                                        | Marustnagu uag tnyha |                          | дюйм | 1      | 1          |  |
|                                                                                  | нагистральная груба                                        |                      | Жидкость                 | дюйм | 3/8    | 1/2        |  |
|                                                                                  |                                                            | ≤1,5 л.с.            | Газ                      | дюйм | 1/2    |            |  |
|                                                                                  |                                                            | 21,571.6.            | Жидкость                 | дюйм | 1/4    |            |  |
| Диаметр трубопровода                                                             |                                                            | 1,8/2,0 л.с.         | Газ                      | дюйм | 5/8    |            |  |
|                                                                                  | Трубы после первого<br>разветвителя                        | 1,0/2,0 ///01        | Жидкость                 | дюйм |        | 1/4        |  |
|                                                                                  |                                                            |                      | Газ                      | дюйм | 5/8    |            |  |
|                                                                                  |                                                            | ≥2,3 л.с.            | Жидкость                 | дюйм | 3/8    |            |  |
|                                                                                  |                                                            |                      | Жидкость                 | дюйм |        | 3/8        |  |
|                                                                                  | Разв                                                       | етвители             |                          |      | E-1    | .02SN4     |  |

## IVX Centrifugal













# Идеальное решение для зданий в центре города

Смонтированные наружные блоки не портят внешний вид здания.

## Гибкость проектирования

Подвесные наружные блоки. Сторона забора и выброса воздуха может меняться в зависимости от места монтажа блока: забор и выброс может осуществляться с одной стороны, либо сзади и сбоку. Напорность вентилятора до 120 Па

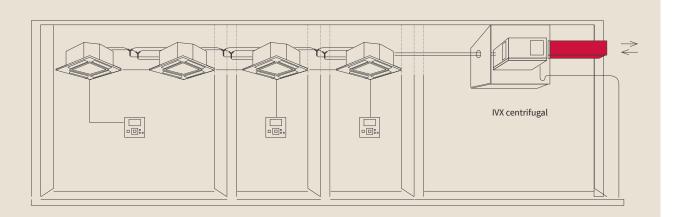
## Всегда высокий уровень комфорта

IVX Centrifugal способна обеспечивать кондиционирование воздуха в шести зонах, с индивидуальным управлением внутренними блоками в каждой из зон.

Высокоэффективные спиральные компрессоры Hitachi, используемые в данных блоках обеспечивают интеллектуальную оттайку наружного блока. Это позволило расширить температурный диапазон эксплуатации и обеспечить более высокий уровень комфорта.

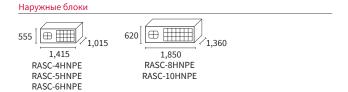
### Низкий уровень шума

Вентиляторы, оборудованные частотным диммером, позволили достичь непревзойденного уровня шума.


# Совместимость со всеми системами управления VRF

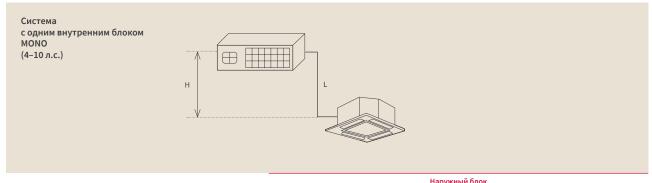
IVX Centrifugal используют протокол управления H-Link II. Поэтому в качестве устройств управления могут использоваться индивидуальные и центральные пульты управления, а также шлюзы для интеграции системы кондиционирования в BMS.

#### Монтаж

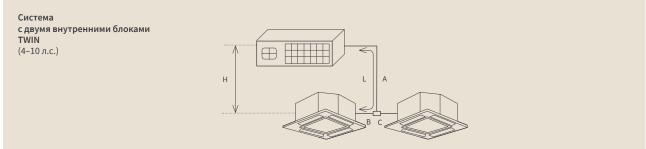

Возможность подключения: RASC-(4–6)HNPE — до 5 внутренних блоков;

RASC-(8-10)HNPE — до 6 внутренних блоков по двум веткам. Совместимы с DX kit.



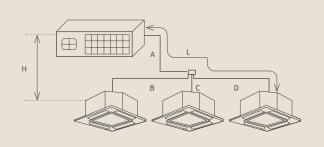

## IVX Centrifugal

|                                                                  |                 |            |                          | Хладагент R410A |                       |                    |
|------------------------------------------------------------------|-----------------|------------|--------------------------|-----------------|-----------------------|--------------------|
|                                                                  |                 | RASC-4HNPE | RASC-5HNPE               | RASC-6HNPE      | RASC-8HNPE            | RASC-10HNPE        |
|                                                                  | Ед. изм.        | 4 л.с.     | 5 л.с.                   | 6 л.с.          | 8 л.с.                | 10 л.с.            |
| Производительность, охлаждение                                   |                 |            |                          |                 |                       |                    |
| Производительность                                               | кВт             | 10,0       | 12,50                    | 14,00           | 20,00                 | 24,00              |
| Потребляемая мощность                                            | кВт             | 2,99       | 3,98                     | 5,09            | 7,41                  | 9,02               |
| Коэффициент энергоэффективности EER                              |                 | 3,35       | 3,14                     | 2,75            | 2,70                  | 2,66               |
| Коэффициент сезонной энергоэффективности SEER                    |                 | 5,60       | 5,43                     | 5,22            | 5,39                  | 5,48               |
| Класс сезонной энергоэффективности                               |                 | Α          | _                        | _               | _                     | _                  |
| Гарантированный диапазон рабочих температур<br>наружного воздуха | °C (CT)         |            |                          | -5+46           |                       |                    |
| Производительность, нагрев                                       |                 |            |                          |                 |                       |                    |
| Производительность                                               | кВт             | 11,2       | 14,00                    | 15,50           | 22,40                 | 26,00              |
| Потребляемая мощность                                            | кВт             | 2,95       | 4,12                     | 5,74            | 7,00                  | 8,52               |
| Коэффициент энергоэффективности СОР                              |                 | 3,80       | 3,40                     | 2,70            | 3,20                  | 3,05               |
| Коэффициент сезонной энергоэффективности SCOP                    |                 | 3,98       | 3,74                     | 3,66            | 3,51                  | 3,71               |
| Класс сезонной энергоэффективности                               |                 | А          | -                        | _               | _                     | _                  |
| Гарантированный диапазон рабочих температур<br>наружного воздуха | °C (MT)         |            |                          | -15+15,5        |                       |                    |
| Наружный блок                                                    |                 |            |                          |                 |                       |                    |
| Уровень шума (охлаждение)                                        | дБ(А)           | 52         | 52                       | 53              | 55                    | 56                 |
| Уровень шума (нагрев)                                            | дБ(А)           | 53         | 53                       | 54              | 56                    | 57                 |
| Расход воздуха (охлаждение /нагрев)                              | м³/ч            |            | 3300                     |                 | 69                    | 00                 |
| Размеры (Д×В×Г)                                                  | ММ              |            | 555×1415×1015            |                 | 620×185               | 50×1360            |
| Вес (нетто)                                                      | КГ              |            | 192                      |                 | 300                   | 303                |
| Мин. мощ. подкл. ВБ                                              | л.с.            |            |                          | 0,8             |                       |                    |
| Количество подключаемых ВБ (мин–макс)                            |                 |            | 1–5                      |                 | 1-                    | -6                 |
| Загрузка НБ (мин–макс)                                           | %               |            |                          | 75–120%         |                       |                    |
| Компрессор                                                       |                 |            |                          | Спиральный      |                       |                    |
| Параметры трубопровода, хладагент                                |                 |            |                          |                 |                       |                    |
| Диаметр труб (жидкость / газ)                                    | мм<br>(дюйм)    |            | 9,52 (3/8) / 15,88 (5/8) |                 | 9,52 (3/8) / 25,4 (1) | 12,7 (1/2) /25,4 ( |
| Мин. длина фреонопровода                                         | М               |            |                          | 5               |                       |                    |
| Макс. длина фреонопровода/ дозаправка                            | м / г/м         |            | 75 / 60                  |                 | 100 / См. т           | ех. докум.         |
| Макс. длина фреонопровода без дозаправки                         | М               |            |                          | 30              |                       |                    |
| Заводская заправка                                               | КГ              | 4,1        | 4,2                      | 4,2             | 5,7                   | 6,2                |
| Перепад высот (НБ выше/НБ ниже)                                  | М               |            |                          | 30/20           |                       |                    |
| Хладагент                                                        |                 |            |                          | R410A           |                       |                    |
| Электрические параметры                                          |                 |            |                          |                 |                       |                    |
| Электропитание                                                   | В/ф/Гц          |            |                          | 400/3/50        |                       |                    |
| Макс. потр. ток                                                  | Α               | 14,1       | 14,1                     | 16,0            | 24                    | ,7                 |
| Кабель электропитания                                            | MM <sup>2</sup> |            | 5×4,0                    |                 | 5×1                   | 6,0                |
| Межблочный кабель                                                | MM <sup>2</sup> |            |                          | 2×0,75          |                       |                    |

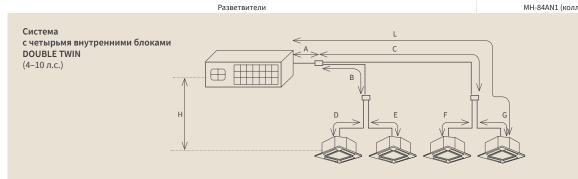





## Проектирование трубопроводов

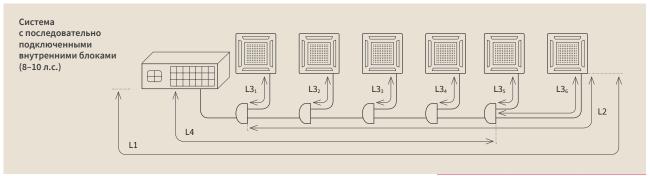



|                                                                                        |                          |      |        | паружный олок |         |  |  |  |
|----------------------------------------------------------------------------------------|--------------------------|------|--------|---------------|---------|--|--|--|
|                                                                                        |                          |      | 4–6 лс | 8 л.с.        | 10 л.с. |  |  |  |
| Максимальная длина трубопровода                                                        | Физическая длина (L)     | М    | 75 100 |               |         |  |  |  |
| Максимальная длина трубопровода<br>от наружного блока<br>до дальнего внутреннего блока | Эквивалентная длина (EL) | М    | 95     | 125           |         |  |  |  |
| Максимальный перепад высот наружный блок/внутренний блок<br>(НБ выше ВБ/НБ ниже ВБ)    |                          | М    | 30/20  |               |         |  |  |  |
|                                                                                        | Газ                      | дюйм | 5/8    | 1             | 1       |  |  |  |
| Диаметр трубопровода                                                                   | Жидкость                 | дюйм | 3/8    | 3/8           | 1/2     |  |  |  |




|                                                                                  |                                                                        |              |                    |      | Наружный блок |          |         |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------|--------------------|------|---------------|----------|---------|--|
|                                                                                  |                                                                        |              |                    |      | 4-6 л.с.      | 8 л.с.   | 10 л.с. |  |
| Мак                                                                              | симальная длина трубопровода                                           | Физи         | ческая длина (L)   | М    | 75            | 10       | 00      |  |
| от наружног                                                                      | симальная длина трубопровода<br>го блока до дальнего внутреннего блока | Эквива       | лентная длина (EL) | М    | 95            | 1:       | 25      |  |
| Максим                                                                           | Максимальная суммарная длина участков                                  |              | A+B+C              | М    | 85            | 100      | 115     |  |
| Максі                                                                            | имальная разница длин участков                                         |              | B-C                | М    | <8            | <        | 8       |  |
| Максимальная длина трубопровода после разветвителя                               |                                                                        | В, С         |                    | М    | 15            | 1        | .5      |  |
| Максимальный перепад высот наружный блок/внутренний блок (НБ выше ВБ/НБ ниже ВБ) |                                                                        |              | М                  |      | 30/20         |          |         |  |
|                                                                                  | Максимальный перепад высот между внутренними блоками                   |              |                    | М    | 10            | 1        | 0       |  |
|                                                                                  |                                                                        |              | Газ                |      | 5/8           | :        | 1       |  |
|                                                                                  | A                                                                      | Жидкость     |                    | дюйм | 3/8           | 3/8      | 1/2     |  |
|                                                                                  |                                                                        | .15          | Газ                | дюйм |               | 1/2      |         |  |
| Диаметр                                                                          |                                                                        | ≤ 1,5 л.с.   | Жидкость           | дюйм |               | 1/4      |         |  |
| Диаметр<br>трубопровода                                                          | D. C.                                                                  | 1.0/2.0      | Газ                | дюйм |               | 5/8      |         |  |
|                                                                                  | B, C                                                                   | 1,8/2,0 л.с. | Жидкость           | дюйм |               | 1/4      |         |  |
|                                                                                  |                                                                        |              | Газ                | дюйм | 5/8           |          |         |  |
|                                                                                  |                                                                        | ≥ 2,3 л.с.   | Жидкость           | дюйм | 3/8           |          |         |  |
|                                                                                  | Разветвитель                                                           |              |                    |      |               | E-102SN4 |         |  |

Система с тремя внутренними блоками TRIPLE (4–10 л.с.)




|                                                                                |                                                            |                          |           |      |          | Наружный блок   |         |
|--------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------|-----------|------|----------|-----------------|---------|
|                                                                                |                                                            |                          |           |      | 4–6 л.с. | 8 л.с.          | 10 л.с. |
|                                                                                | Максимальная длина трубопровода                            | Физическая               | длина (L) | М    | 75       | 10              | 00      |
|                                                                                | от наружного блока до дальнего внутреннего блока           | Эквивалентная длина (EL) |           | М    | 95       | 13              | 25      |
| Максимальная суммарная длина участков                                          |                                                            | A+B+C                    |           | М    | 85       | 100             | 130     |
| Максимальная разница длин участков                                             |                                                            | B-C, B-                  | D, C-D    | М    |          | <8              |         |
| M                                                                              | аксимальная длина трубопровода после разветвителя          | В, С                     | , D       | М    | 10       | 1               | 5       |
| Максимальный перепад высот наружный блок/внутренний блок (НБ выше ВБ/НБ ниже В |                                                            |                          |           | М    |          | 30/20           |         |
|                                                                                | и                                                          |                          | М         | 3    | 1        | 0               |         |
|                                                                                | Максимальный перепад высот между внутренним блоком и разве | твителем                 |           | М    |          | 3               |         |
|                                                                                | A                                                          | Газ                      |           | дюйм | 5/8      | 1               | 1       |
|                                                                                | n                                                          | Жидкость                 |           | дюйм | 3/8      | 3/8             | 1/2     |
|                                                                                |                                                            | ≤ 1,5 л.с.               | Газ       | дюйм |          | 1/2             |         |
| Диаметр                                                                        |                                                            | ± 1,5 /1.c.              | Жидкость  | дюйм |          | 1/4             |         |
| трубопровода                                                                   | B, C, D                                                    | 1,8/2,0 л.с.             | Газ       | дюйм |          | 5/8             |         |
|                                                                                | 5, 5, 5                                                    | 1,0/2,0 /1.0.            | Жидкость  | дюйм |          | 1/4             |         |
|                                                                                |                                                            | ≥ 2,3 л.с.               | Газ       | дюйм |          | 5/8             |         |
|                                                                                |                                                            |                          | Жидкость  | дюйм |          | 3/8             |         |
|                                                                                | Разветвители                                               |                          |           |      | MH       | -84AN1 (коллект | op)     |



|              |                                                                                                                                                                                                                                                                                                                                         |                                                                                        |              |      | Наружный блок |          |         |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------|------|---------------|----------|---------|
|              |                                                                                                                                                                                                                                                                                                                                         |                                                                                        |              |      | 4-6 л.с.      | 8 л.с.   | 10 л.с. |
|              | Максимальная длина трубопровода                                                                                                                                                                                                                                                                                                         | Физическая                                                                             | длина (L)    | М    | 75            | 10       | 0       |
|              | от наружного блока до дальнего внутреннего блока Максимальная суммарная длина участков  Максимальная разница длин участков  Максимальная длина трубопровода после разветвителя Максимальный перепад высот наружный блок/внутренними Максимальный перепад высот между внутренними Максимальный перепад высот между разветвите А  В, C, D | Эквивалентна                                                                           | я длина (EL) | М    | 95            | 12       | 5       |
|              | Максимальная суммарная длина участков                                                                                                                                                                                                                                                                                                   | A+B+C                                                                                  |              | М    | 85            | 100      | 145     |
|              | Максимальная разница длин участков                                                                                                                                                                                                                                                                                                      | (C+G)-(C+F)<br>(B+E)-(B+D)<br>(C+G)-(B+E)<br>(C+G)-(B+D)<br>(C+F)-(B+D)<br>(C+F)-(B+D) |              | М    | <8 <8         |          | 3       |
| М            | аксимальная длина трубопровода после разветвителя                                                                                                                                                                                                                                                                                       | (B+D, B+E, C+F, C+G)                                                                   |              |      |               | 15       |         |
| M            | аксимальный перепад высот наружный блок/внутренний блок (НБ выш                                                                                                                                                                                                                                                                         | е ВБ/НБ ниже ВБ)                                                                       |              | М    |               | 30/20    |         |
|              | Максимальный перепад высот между внутренними блока                                                                                                                                                                                                                                                                                      | ми                                                                                     |              | М    |               | 10       |         |
|              | Максимальный перепад высот между внутренним блоком и разве                                                                                                                                                                                                                                                                              | етвителем                                                                              |              | М    |               | 3        |         |
|              | Максимальный перепад высот между разветвителями                                                                                                                                                                                                                                                                                         |                                                                                        |              | М    |               | 3        |         |
|              | Δ                                                                                                                                                                                                                                                                                                                                       | Га                                                                                     | 3            | дюйм | 5/8           | 1        |         |
|              | n                                                                                                                                                                                                                                                                                                                                       | Жидкость                                                                               |              | дюйм | 3             | /8       | 1/2     |
|              |                                                                                                                                                                                                                                                                                                                                         | ≤ 1.5 л.с.                                                                             | Газ          | дюйм |               | 1/2      |         |
|              |                                                                                                                                                                                                                                                                                                                                         |                                                                                        | Жидкость     | дюйм |               | 1/4      |         |
|              | B. C. D                                                                                                                                                                                                                                                                                                                                 | 1,8/2,0 л.с.                                                                           | Газ          | дюйм |               | 5/8      |         |
|              | 5, 5, 5                                                                                                                                                                                                                                                                                                                                 | 2,0,2,07116.                                                                           | Жидкость     | дюйм |               | 1/4      |         |
| Диаметр      |                                                                                                                                                                                                                                                                                                                                         | ≥ 2,3 л.с.                                                                             | Газ          | дюйм |               | 5/8      |         |
| трубопровода |                                                                                                                                                                                                                                                                                                                                         | ,                                                                                      | Жидкость     | дюйм |               | 3/8      |         |
|              |                                                                                                                                                                                                                                                                                                                                         | ≤ 1,5 л.с.                                                                             | Газ          | дюйм |               | 1/2      |         |
|              |                                                                                                                                                                                                                                                                                                                                         | ,                                                                                      | Жидкость     | дюйм |               | 1/4      |         |
|              | D, E, F, G                                                                                                                                                                                                                                                                                                                              | 1,8/2,0 л.с.                                                                           | Газ          | дюйм |               | 5/8      |         |
|              | , , , , -                                                                                                                                                                                                                                                                                                                               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                | Жидкость     | дюйм |               | 1/4      |         |
|              |                                                                                                                                                                                                                                                                                                                                         | ≥ 2,3 M                                                                                | Газ          | дюйм |               | 5/8      |         |
|              |                                                                                                                                                                                                                                                                                                                                         | ,                                                                                      | Жидкость     | дюйм |               | 3/8      |         |
|              | Разветвители                                                                                                                                                                                                                                                                                                                            |                                                                                        |              |      |               | E-102SN4 |         |



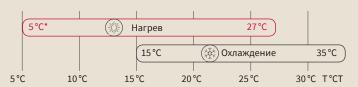


|                                                                    |                                                                                  |                       |                                                                               |      | Наружный блок |          |         |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------|------|---------------|----------|---------|
|                                                                    |                                                                                  |                       |                                                                               |      | 8 л.с.        | 8 л.с.   | 10 л.с. |
| Макси                                                              | мальная длина трубопровода<br>блока до дальнего внутреннег                       |                       | Физическая длина (L)                                                          | М    | 75            | 100      |         |
| от наружного                                                       | блока до дальнего внутреннег                                                     | о блока               | Эквивалентная длина (EL)                                                      | М    | 95            | 12       | 15      |
| Максимальная длина                                                 | трубопровода от первого раз                                                      | ветвителя до дальнего | внутренного блока (L2)                                                        | М    | 30            | 4        | 0       |
| Максимальная                                                       | длина трубопровода между р                                                       | азветвителем и внутре | енним блоком (L3)                                                             | М    | 10            | 1        | 5       |
| Максимальная суммарная длина участков                              |                                                                                  |                       | L4 + (L3 <sub>1</sub> + L3 <sub>2</sub> + L3 <sub>3</sub> + L3 <sub>4</sub> ) | М    | 95            | 100      | 145     |
| Максимальный пе                                                    | Максимальный перепад высот наружный блок/внутренний блок (НБ выше ВБ/НБ ниже ВБ) |                       |                                                                               |      |               | 30/20    |         |
| Максимальный перепад высот между внутренними блоками               |                                                                                  |                       |                                                                               | М    |               | 10       |         |
| Максимальный перепад высот между внутренним блоком и разветвителем |                                                                                  |                       | М                                                                             |      | 3             |          |         |
|                                                                    | Максимальный перепад высо                                                        | т между разветвителя  | ми                                                                            | М    |               | 3        |         |
|                                                                    | Магистральная труба                                                              |                       | Газ                                                                           | дюйм |               | 1        |         |
|                                                                    | магистральная труоа                                                              |                       | Жидкость                                                                      |      | 3,            | 8        | 1/2     |
|                                                                    |                                                                                  | ≤1,5 л.с.             | Газ                                                                           | дюйм |               | 1/2      |         |
|                                                                    |                                                                                  | 31,571.6.             | Жидкость                                                                      | дюйм |               | 1/4      |         |
| Диаметр трубопровода                                               |                                                                                  | 1,8/2,0 л.с.          | Газ                                                                           | дюйм | 5/8           |          |         |
|                                                                    | Трубы после первого<br>разветвителя                                              | 1,0/2,0 /1.c.         | Жидкость                                                                      | дюйм |               | 1/4      |         |
|                                                                    |                                                                                  |                       | Газ                                                                           | дюйм | 5/8           |          |         |
|                                                                    |                                                                                  | ≥2,3 л.с.             | Жидкость                                                                      | дюйм |               | 3/8      |         |
|                                                                    |                                                                                  |                       | Жидкость                                                                      | дюйм |               | 3/8      |         |
|                                                                    | Разв                                                                             | етвители              |                                                                               |      |               | E-102SN4 |         |



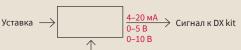
## IVX KKP



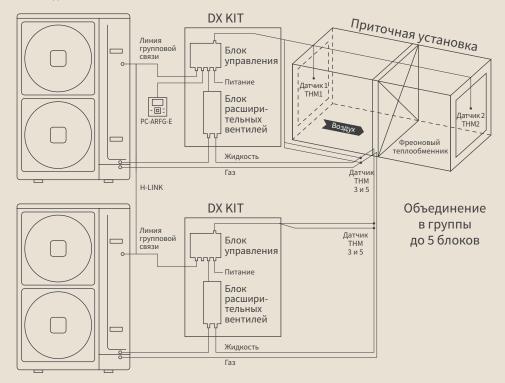








### Широкий диапазон эксплуатации

Температура воздуха на входе в теплообменник приточной установки.




#### Широкие возможности управления

- Управление посредством внешнего цифрового сигнала 0-10 В, 0-5 В / 4-20 мА.
- Точное поддержание температуры воздуха на выходе посредством внешнего цифрового сигнала — 0-10 В при инкрементальном управлении производительностью.
- Управление посредством «сухого контакта».
- Управление по температуре воздуха на входе и по температуре воздуха на выходе.



Температура воздуха на входе, выходе



### Интеллектуальная оттайка

При обслуживании многоконтурного теплообменника наружные блоки будут размораживаться по очереди. При использовании трех наружных блоков оттаивать будет только один. При использовании пяти наружных блоков оттаивать будут только два из них.

## IVX KKE

|                                                                  |                 |                          | 2                       | Сладагент R410A   |                      |                  |
|------------------------------------------------------------------|-----------------|--------------------------|-------------------------|-------------------|----------------------|------------------|
|                                                                  |                 | RAS-4XH(V)NP1E           | RAS-5XH(V)NP1E          | RAS-6XH(V)NP1E    | RAS-8XHNPE           | RAS-10XHNPE      |
|                                                                  | Ед. изм.        | 4 л.с.                   | 5 л.с.                  | 6 л.с.            | 8 л.с.               | 10 л.с.          |
| Производительность, охлаждение                                   |                 |                          |                         |                   |                      |                  |
| Производительность (мин-макс)                                    | кВт             | 10,0 (4,5–11,2)          | 12,50 (5,7–14,0)        | 14,00 (6,0-16,00) | 20,00 (8,0-22,4)     | 25,00 (10,0-28,0 |
| Потребляемая мощность                                            | кВт             | 1,99                     | 3,11                    | 3,94              | 5,36                 | 7,88             |
| Коэффициент энергоэффективности EER                              |                 | 4,68                     | 3,81                    | 3,41              | 3,56                 | 3,07             |
| Гарантированный диапазон рабочих температур<br>наружного воздуха | °C (CT)         |                          |                         | -5+46             |                      |                  |
| Производительность, нагрев                                       |                 |                          |                         |                   |                      |                  |
| Производительность (мин-макс)                                    | кВт             | 11,2 (5,0–14,0)          | 14,00 (5,0-18,0)        | 16,00 (5,0-20,0)  | 22,40 (6,3–28,0)     | 28,00 (8,0-35,0  |
| Потребляемая мощность                                            | кВт             | 2,02                     | 2,91                    | 3,61              | 5,06                 | 7,03             |
| Коэффициент энергоэффективности СОР                              |                 | 5,16                     | 4,55                    | 4,23              | 4,21                 | 3,84             |
| Гарантированный диапазон рабочих температур<br>наружного воздуха | °C (MT)         |                          |                         | -20+15            |                      |                  |
| Наружный блок                                                    |                 |                          |                         |                   |                      |                  |
| Уровень шума (охлаждение)                                        | дБ(А)           | 47                       | 48                      | 48                | 57                   | 58               |
| Уровень шума (нагрев)                                            | дБ(А)           | 49                       | 50                      | 50                | 59                   | 60               |
| Уровень звуковой мощности                                        | дБ(А)           | 63                       | 64                      | 65                | 76                   | 76               |
| Расход воздуха (охлаждение /нагрев)                              | м³ /ч           | 4800                     | 5400                    | 6000              | 7620                 | 8040             |
| Размеры (B×Ш× Г)                                                 | ММ              |                          |                         | 1380×950x370      |                      |                  |
| Вес (нетто)                                                      | КГ              | 103                      | 103                     | 103               | 136                  | 138              |
| Компрессор                                                       |                 |                          | Спиј                    | ральный Инвертор  |                      |                  |
| Параметры трубопровода, хладагент                                |                 |                          |                         |                   |                      |                  |
| Диаметр труб (жидкость / газ)                                    | мм<br>(дюйм)    | 9,52 (3/8) / 15,88 (5/8) | 9,52 (³/ <sub>8</sub> ) | / 25,4 (1)        | 12,7 (1/2)           | / 25,4 (1)       |
| Мин. длина фреонопровода                                         | М               |                          |                         | 5                 |                      |                  |
| Макс. длина фреонопровода / дозаправка                           | м / г/м         | 75 / См тех              | .докум.                 | :                 | 100 / См. тех. докум | 1.               |
| Макс. длина фреонопровода без дозаправки                         | М               |                          |                         | 30                |                      |                  |
| Заводская заправка                                               | КГ              | 4,1                      | 4,2                     | 4,2               | 5,7                  | 6,2              |
| Перепад высот (НБ выше/НБ ниже)                                  | М               |                          |                         | 30/20             |                      |                  |
| Хладагент                                                        |                 |                          |                         | R410A             |                      |                  |
| Электрические параметры                                          |                 |                          |                         |                   |                      |                  |
| Электропитание                                                   | В/ф/Гц          | 400/3/50 (23             | 30/1/50)                |                   | 400/3/50             |                  |
| Макс. потребительский ток                                        | А               | 14,0 (30                 | ),5)                    | 16,0 (30,5)       | 2-                   | 4,0              |
| Кабель электропитания                                            | MM <sup>2</sup> |                          | 5×2,5 (3x6,0)           |                   | 5×                   | 6,0              |
| Межблочный кабель                                                | MM <sup>2</sup> |                          |                         | 2×0,75            |                      |                  |

#### Наружные блоки





## Комплект DX KIT





#### Комплект поставки:

- 4 датчика температуры (ТНМ1 датчик температуры воздуха на входе, ТНМ2 датчик температуры воздуха на выходе, ТНМЗ датчик температуры кипения, ТНМ4 датчик температуры перегретого хладагента);
- 1 блок расширительного вентиля;
- 1 блок управления.

#### Опционально

- Пульт управления.
- Ответная часть РСС-1А..

### Функции и особенности

DX KIT позволяет использовать наружные блоки HITACHI в качестве компрессорно-конденсаторных блоков (ККБ) при подключении их к испарительным секциям приточных установок, тепловым завесам или другим стандартным внутренним блокам. В комплект поставки входят 4 датчика температуры, которые устанавливаются на подключаемый испаритель.

- DX KIT имеет степень защиты IP66.
- Поддерживает режимы работы как охлаждение, так и нагрев.
- Комплект DX KIT состоит из 2 модулей: блока расширительных вентилей и блока управления.
- Производительность в режимах охлаждения и нагрева определяется на основе заданной с пульта управления температуры и температуры потока воздуха на выходе.
- Комплект DX KIT имеет различные входы и выходы, обеспечивающие интеграцию оборудования в существующие системы управления. Помимо этого можно использовать также сигналы от наружного блока.
- Широкий диапазон совместимых теплообменников, подключение аппаратов больших внутренних
- Возможность создавать холодильные станции для обслуживания многоконтурных теплообменных аппаратов (до 5 штук).

|                                                            |     |                                                                          |                  |                   | ХЛАДАГЕ             | HT R410A             |                      |                      |                      |
|------------------------------------------------------------|-----|--------------------------------------------------------------------------|------------------|-------------------|---------------------|----------------------|----------------------|----------------------|----------------------|
| Модель                                                     |     | EXV 2.0E2                                                                | EXV 2.5E2        | EXV 3.0E2         | EXV 4.0E2           | EXV 5.0E2            | EXV 6.0E2            | EXV 8.0E2            | EXV 10.0E2           |
| Совместимость                                              |     | Наружные блоки IVX ККБ, Set Free mini S, Set Free mini L, Set Free Sigma |                  |                   |                     |                      | igma                 |                      |                      |
| Холодопроизводительность                                   | кВт | 5,0<br>(4,0-5,6)                                                         | 6,0<br>(4,8-6,3) | 7,10<br>(5,7–8,0) | 10,00<br>(8,0-11,2) | 12,50<br>(10,0-14,0) | 14,00<br>(11,2-16,0) | 20,00<br>(16,0–22,4) | 25,00<br>(20,0–28,0) |
| Теплопроизводительность                                    | кВт | 5,6<br>(4,5-7,1)                                                         | 7,0<br>(5,6-7,1) | 8,0<br>(6,4–9,0)  | 11,2<br>(9,0–12,5)  | 14,0<br>(11,2–16,0)  | 16,0<br>(12,8–18,0)  | 22,4<br>(17,9–25,0)  | 28,0<br>(22,4–31,5)  |
| Объем подключаемого теплообменника мин./макс.              | Л   | 0,57/1,16                                                                | 0,89/1,35        | 1,03/1,57         | 1,51/2,37           | 1,92/2,37            | 1,92/2,92            | 2,92/3,89            | 3,89/4,76            |
| Объем подключаемого<br>теплообменника к IVX ККБ мин./макс. | л   | 0,57/1,64                                                                | 0,89/1,83        | 1,03/2,89         | 1,51/4,56           | 1,92/4,56            | 1,92/5,11            | 2,92/6,93            | 3,89/10,73           |
| Блок управления                                            |     |                                                                          |                  |                   |                     |                      |                      |                      |                      |

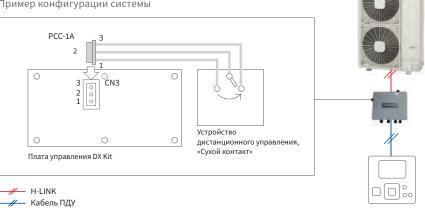
| Блок управления               |        |             |
|-------------------------------|--------|-------------|
| Электропитание                | В/ф/Гц | 230/1/50    |
| Габаритные размеры(В × Ш × Г) | ММ     | 291×341×127 |
| Вес (нетто)                   | КГ     | 3,0         |
| Количество в комплекте        |        | 1           |

| Блок расширительных вентилей        |              |            |        |            |     |
|-------------------------------------|--------------|------------|--------|------------|-----|
| Габаритные размеры (В × Ш × Г)      | ММ           |            | 431×19 | 9×103      |     |
| Вес (нетто)                         | КГ           | 2,0        |        | 2,7        | 4,5 |
| Количество в комплекте              |              |            | 1      |            |     |
| Диам. труб жидкостной линии<br>Вход | мм<br>(дюйм) | 6,35 (1/4) |        | 9,52 (3/8) |     |
| Диам. труб жидкостной линии Выход   | мм<br>(люйм) | 6,35 (1/4) |        | 9,52 (3/8) |     |

Ответная часть разъема РСС-1А

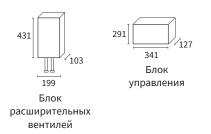
Для осуществления управления посредством «сухого кон-

такта» и снятия сигнала «Авария».


Может подключаться как к плате управления DX Kit, так и к

плате наружного блока.

Один комплект РСС-1А содержит три разъема.




Пример конфигурации системы



Полупромышленные и мультизональные системы кондиционирования

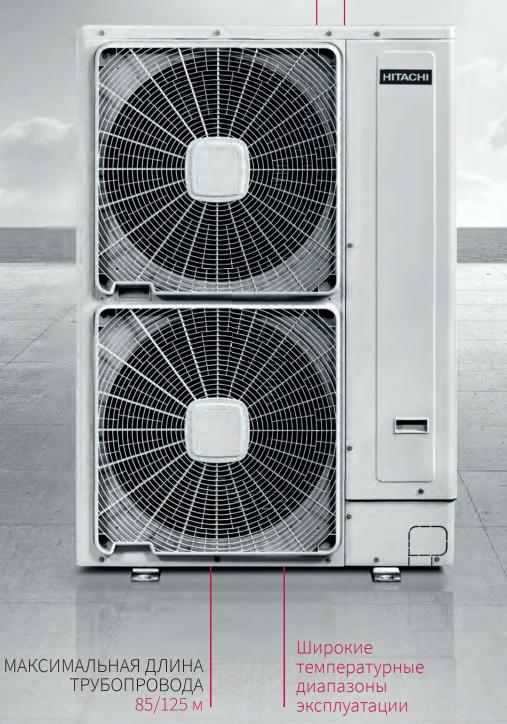
#### DX kit





# Мультизональные системы air365Max

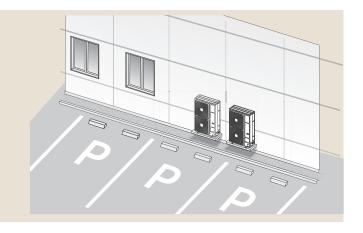
Cooling & Heating




На климатическом рынке современных зданий востребованы системы в одинаковой мере обеспечивающие и эффективное охлаждение, и нагрев, и даже имеющие возможность одновременной работы в этих режимах. То есть в то время как часть помещений охлаждается, остальные помещения отапливаются — это происходит в весенне-осенний период эксплуатации, что в нашей климатической зоне составляет очень длительное время. Мультизональные VRF системы Set Free полностью удовлетворяют этим требованиям, поскольку и высокоэффективная серия FSXNP2E, и серия стандарт FSXNS2E могут работать как по двух-, так и по трехтрубной схеме. Для этого используются одни и те же наружные блоки, а внутренние блоки, предназначенные для работы в режиме рекуперации, дополняются только блоками-переключателями потока (СН-блок). В такой системе часть внутренних блоков, работающих в режиме только охлаждение, не требует наличия СН-блоков.

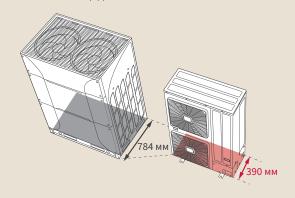


ПРОСТОТА МОНТАЖА БЕЗ ИСПОЛЬЗОВАНИЯ ПЛОЩАДЕЙ КРЫШ: НА 30% КОМПАКТНЕЕ

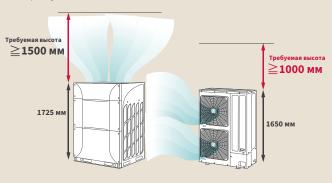

ВОЗМОЖНОСТЬ КОНДИЦИОНИРОВАНИЯ ДО 39 ЗОН С ИНДИВИДУАЛЬНЫМИ НАСТРОЙКАМИ



## Гибкость проектирования

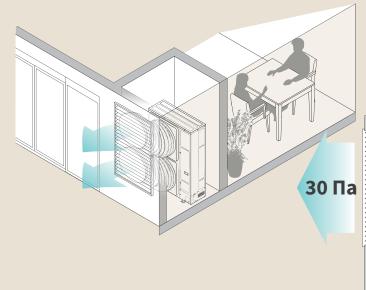

### Компактная конструкция

Компактные и высокопроизводительные наружные блоки серии Set Free mini занимают меньшие площади при монтаже оборудования, а так же могут монтироваться на стене здания.




### Пример сравнения для наружных блоков 12НР

Разница в толщине блока — 394 мм. Занимаемая площадь — 43%.

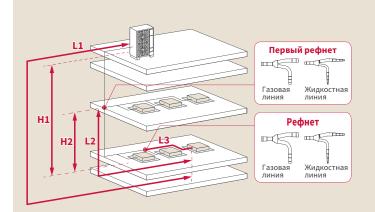


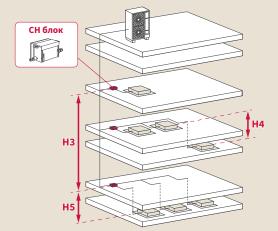

Разница в высоте ниши для размещения — 575мм. Требуемая высота — 18%.



### Высокий напор вентиляторов

Наружные блоки SET FREE mini спроектированы с возможностью монтажа оборудования внутри здания. Вентиляторы с инверторным приводом имеют внешний статический напор до 30 Па, что позволяет выполнять монтаж оборудования, не нарушая архитектуру здания.






### Длины трасс и перепады высот

Для облегчения проектирования систем кондиционирования на базе наружных блоков Set Free mini, они имеют большие длины трасс и перепады высот.

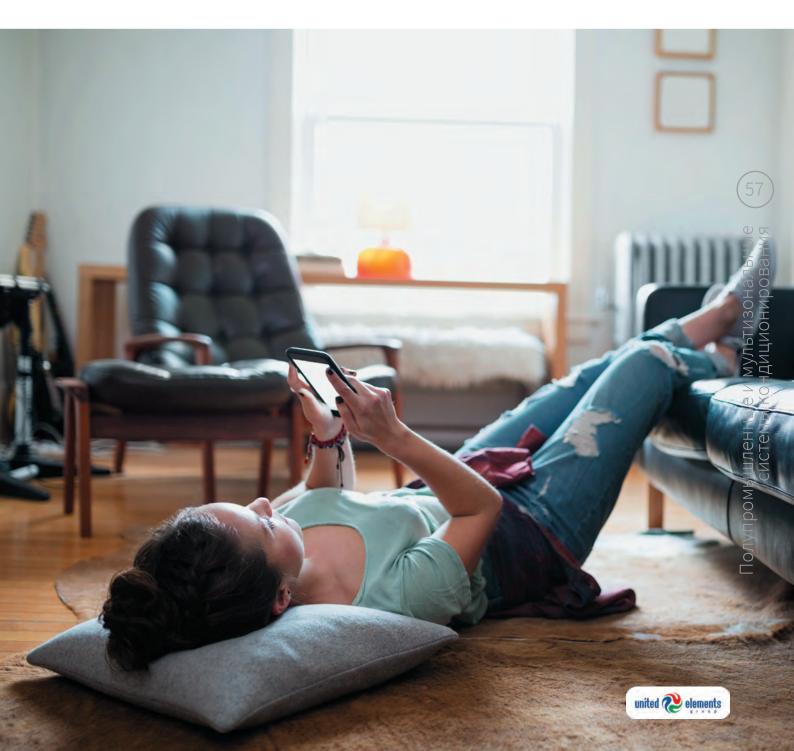




|                         |                                       |                                |    |   | 4–6 НР (тепло/холод) | 8-12 НР (тепло/холод) | 8–12 НР (С рекуперацией тепла) |
|-------------------------|---------------------------------------|--------------------------------|----|---|----------------------|-----------------------|--------------------------------|
|                         | Суммарная                             | Суммарная                      |    |   | 180                  | 500                   | 500                            |
| Максимальная            | Между НБ и дальни                     | ıм BБ                          | L1 | М | 85                   | 125                   | 125                            |
| длина                   | От 1-го рефнета до                    | От 1-го рефнета до дальнего ВБ |    | М | 40                   | 90                    | 90                             |
| трубопровода            | От рефнета до ВБ                      |                                | L3 | М | 15                   | 40                    | 40                             |
|                         | От СН-блока до ВБ                     | От СН-блока до ВБ              |    | М | -                    | _                     | 40                             |
|                         |                                       | НБ выше ВБ                     | H1 | М | 30                   | 50                    | 50                             |
|                         | Между НБ и ВБ                         | НБ ниже ВБ                     |    | М | 30                   | 40                    | 40                             |
| Максимальный<br>перепад | Между ВБ                              |                                | H2 | М | 15                   | 15                    | 15                             |
| высот                   | Между СН-блоками                      | 1                              | НЗ | М | _                    | _                     | 15                             |
|                         | Между ВБ, подклю<br>к одному СН-блоку |                                | H4 | М | _                    | _                     | 4                              |
| Между СН-блоком         | и и ВБ                                |                                | H5 | М | _                    | _                     | 15                             |

### Температурные диапазоны эксплуатации

Наружные блоки Set Free mini предназначены для безупречной работы в самом холодном или жарком климате, чтобы обеспечить неизменно комфортную температуру в каждом обслуживаемом помещении.




## Возможность подключения до 39 внутренних блоков

Благодаря наличию внутренних блоков малой производительности — 0,4 HP, появилась возможность кондиционирования помещений очень небольших площадей. При этом к наружным блокам производительностью 12 HP можно подключать до 39 внутренних блоков.

| Производительность<br>наружного блока, НР                   | 4  | 5  | 6  | 8  | 10 | 12 |
|-------------------------------------------------------------|----|----|----|----|----|----|
| Максимальное количество подключаемых внутренних блоков, шт. | 13 | 16 | 18 | 26 | 32 | 39 |





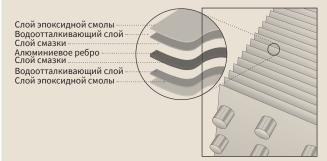
## Set Free Mini
















#### Усиленная антикоррозионная защита

Благодаря трехслойному покрытию ребер теплообменника, серия Set Free Mini имеет лучшую защиту для установки в агрессивных средах.

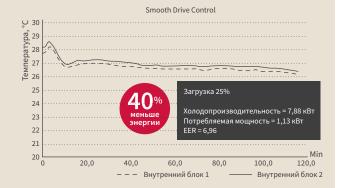


## Точность поддержания комфортнойя температуры

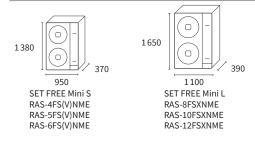
Сверхточная система настройки частоты компрессора (0,1 Гц), обеспечивающая наилучшую производительность наружного блока при частичных нагрузках и постоянной температуре окружающей среды. Эта новая функция позволяет одному агрегату мощностью 1,1 кВт (0,4 л.с.) работать во всей системе VRF.

### Простота обслуживания

Прямой доступ к семисегментному дисплею для выполнения тестов и диагностики. Рабочие настройки в реальном времени и коды ошибок установки.


#### Интеллектуальная разморозка

Интеллектуальный режим размораживания обеспечивает более длительный период нагрева без размораживания. Этот период автоматически подстраивается под время размораживания предыдущих циклов и может длиться до 240 минут, повышая уровень комфорта, а также теплопроизводительность.


## Широкий температурный диапазон работы

Рабочий диапазон наружной температуры.





#### Наружные блоки



## Set Free Mini

### SET FREE Mini S

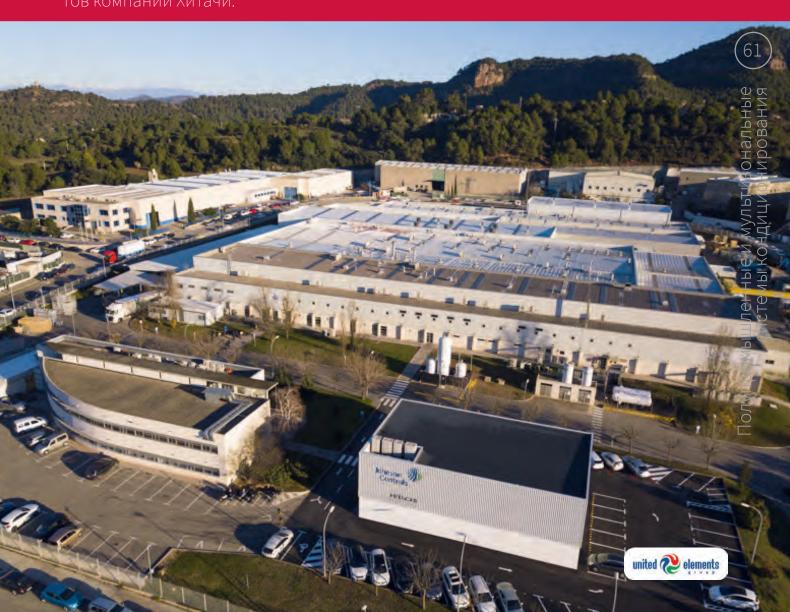
|                                                                  |                 |                         | Хладагент R410A          |                         |
|------------------------------------------------------------------|-----------------|-------------------------|--------------------------|-------------------------|
|                                                                  |                 | RAS-4FS(V)NME<br>4 л.с. | RAS-5FS(V)NME<br>5 л.с.  | RAS-6FS(V)NME<br>6 л.с. |
| Производительность, охлаждение                                   |                 |                         |                          |                         |
| Производительность                                               | кВт             | 12,10                   | 14,00                    | 16,00                   |
| Потребляемая мощность                                            | кВт             | 2,97                    | 3,26                     | 4,35                    |
| Коэффициент энергоэффективности EER                              |                 | 4,07                    | 4,29                     | 3,68                    |
| Коэффициент сезонной энергоэффективности SEER 1ф/3               | ф               | 6,67/6,61               | 6,64/6,61                | 6,40/6,37               |
| Гарантированный диапазон рабочих температур<br>наружного воздуха | °C (CT)         |                         | -548                     |                         |
| Производительность, нагрев                                       |                 |                         |                          |                         |
| Производительность                                               | кВт             | 12,50                   | 16,00                    | 18,00                   |
| Потребляемая мощность                                            | кВт             | 2,89                    | 3,57                     | 4,3                     |
| Коэффициент энергоэффективности СОР                              |                 | 4,33                    | 4,48                     | 4,19                    |
| Коэффициент сезонной энергоэффективности SCOP                    |                 | 4,15                    | 4,40                     | 4,25                    |
| Гарантированный диапазон рабочих температур<br>наружного воздуха | °C (MT)         |                         | -20+15                   |                         |
| Наружный блок                                                    |                 |                         |                          |                         |
| Уровень шума (охлаждение)                                        | дБ(А)           | 52                      | 52                       | 53                      |
| Уровень звуковой мощности                                        | дБ(А)           | 69                      | 72                       | 74                      |
| Расход воздуха (охлаждение)                                      | м³/ч            | 8700                    | 8700                     | 8700                    |
| Габаритные размеры (В × Д × Г)                                   | ММ              |                         | 1380×950×370             |                         |
| Вес (нетто) 1ф/3ф                                                | КГ              | 114/115                 | 118/119                  | 118/119                 |
| Количество подключаемых ВБ (мин–макс)                            |                 | 1-13                    | 1–16                     | 1-18                    |
| Загрузка НБ (мин–макс)                                           | %               |                         | 50-130%                  |                         |
| Компрессор                                                       |                 |                         | Спиральный               |                         |
| Параметры трубопровода, хладагент                                |                 |                         |                          |                         |
| Диаметр труб. двухтрубная (жидкость / газ)                       | мм<br>(дюйм)    |                         | 9,52 (3/8) / 15,88 (5/8) |                         |
| Макс. длина фреонопровода                                        | М               |                         | 180                      |                         |
| Заводская заправка                                               | КГ              | 3,7                     | 4,                       | 1                       |
| Перепад высот (НБ выше/НБ ниже)                                  | М               |                         | 30/30                    |                         |
| Хладагент                                                        |                 |                         | R410A                    |                         |
| Электрические параметры                                          |                 |                         |                          |                         |
| Электропитание                                                   | В/ф/Гц          |                         | 400/3/50 (230/1/50)      |                         |
| Макс. потр. ток 1ф/3ф                                            | А               |                         | 23,5/16,                 |                         |
| Кабель электропитания 1ф/3ф                                      | MM <sup>2</sup> |                         | 3×6,0/5×4,0              |                         |
| Межблочный кабель                                                | MM <sup>2</sup> |                         | 2×0,75                   |                         |



### SET FREE Mini L

|                                                                  |                 |                                        | Хладагент R410A                       |                                   |  |
|------------------------------------------------------------------|-----------------|----------------------------------------|---------------------------------------|-----------------------------------|--|
|                                                                  |                 | RAS-8FSXNME<br>8 n.c.                  | RAS-10FSXNME<br>10 л.с.               | RAS-12FSXNME<br>12 π.c.           |  |
| Производительность, охлаждение                                   |                 |                                        |                                       |                                   |  |
| Производительность                                               | кВт             | 22,40                                  | 28,00                                 | 33,50                             |  |
| Потребляемая мощность                                            | кВт             | 6,25                                   | 7,27                                  | 9,36                              |  |
| Коэффициент энергоэффективности EER                              |                 | 3,60                                   | 3,85                                  | 3,58                              |  |
| Коэффициент сезонной энергоэффективности SEE                     | :R              | 7,59                                   | 8,31                                  | 8,26                              |  |
| Гарантированный диапазон рабочих температур<br>наружного воздуха | °C (CT)         | -5+48                                  |                                       |                                   |  |
| Производительность, нагрев                                       |                 |                                        |                                       |                                   |  |
| Производительность                                               | кВт             | 25,00                                  | 31,50                                 | 37,50                             |  |
| Потребляемая мощность                                            | кВт             | 5,32                                   | 6,89                                  | 9,15                              |  |
| Коэффициент энергоэффективности СОР                              |                 | 4,70                                   | 4,57                                  | 4,10                              |  |
|                                                                  | )P              | 5,62                                   | 4,72                                  | 4,66                              |  |
| Гарантированный диапазон рабочих температур<br>наружного воздуха | °C (MT)         |                                        | -20+15                                |                                   |  |
| Наружный блок                                                    |                 |                                        |                                       |                                   |  |
| Уровень шума (охлаждение)                                        | дБ(А)           | 55                                     | 59                                    | 60                                |  |
| Уровень звуковой мощности                                        | дБ(А)           | 76                                     | 77                                    | 77                                |  |
| Расход воздуха (охлаждение)                                      | м³/ч            | 9900                                   | 11100                                 | 11100                             |  |
| Габаритные размеры (В × Д × Г)                                   | ММ              |                                        | 1650×1100×390                         |                                   |  |
| Вес (нетто)                                                      | КГ              | 188                                    | 194                                   | 196                               |  |
| Количество подключаемых ВБ (мин–макс)                            |                 | 1-26                                   | 1-32                                  | 1-39                              |  |
| Загрузка НБ (мин–макс)                                           | %               |                                        | 50-130                                |                                   |  |
| Компрессор                                                       |                 |                                        | Спиральный                            |                                   |  |
| Параметры трубопровода, хладагент                                |                 |                                        |                                       |                                   |  |
| Диаметр труб. двухтрубная<br>(жидкость / газ)                    | мм<br>(дюйм)    | 9,52 (3/8) / 19,05 (3/4)               | 9,52 (3/8) / 22,2 (7/8)               | 12,7 (1/2)/ 25,4 (1)              |  |
| Диаметр труб. трехтрубная<br>(жидкость / газ н.д./ газ в.д.)     | мм<br>(дюйм)    | 9,52 (3/8) / 19,05 (3/4) / 15,88 (5/8) | 9,52 (3/8) / 19,05 (3/4) / 22,2 (7/8) | 12,7 (1/2) / 25,4 (1) / 22,2 (7/8 |  |
| Макс. длина фреонопровода                                        | М               |                                        | 500                                   |                                   |  |
| Заводская заправка                                               | КГ              | 6,0                                    | 6,0                                   | 6,0                               |  |
| Перепад высот (НБ выше/НБ ниже)                                  | М               |                                        | 30/30                                 |                                   |  |
| Хладагент                                                        |                 |                                        | R410A                                 |                                   |  |
| Электрические параметры                                          |                 |                                        |                                       |                                   |  |
| Электропитание                                                   | В/ф/Гц          |                                        | 400/3/50                              |                                   |  |
| Макс. потр. ток                                                  | Α               | 18,0                                   | 19,0                                  | 23,0                              |  |
| Кабель электропитания                                            | MM <sup>2</sup> | 5×4,0                                  | 5×(                                   | 5,0                               |  |
| Межблочный кабель                                                | MM <sup>2</sup> |                                        | 2×0,75                                |                                   |  |

## Johnson Controls Hitachi Air Conditioning Испания, S.A.U.


С 1992 года основные производственные мощности по выпуску мультизональной климатической техники Хитачи (VRF) располагаются в г. Барселона (Испания), завод НАРЕ

На заводе проходят обучение технические специалисты и представители сервисных служб.

Высокая технологичность и повышенный контроль качества на производстве, научные исследования и опытно-конструкторские разработки позволяют компании Хитачи выпускать высококачественные, эффективные и надежные системы кондиционирования воздуха, такие как новая линейка VRF систем air365 Max.

Экологические соображения учитываются с самых первых этапов проектирования продукции, затем в процессе производства и монтажа, установки оборудования и эксплуатации с приоритетным использованием экологически безвредных хладагентов R410a и R32.

Завод придерживается самых строгих требований в области охраны окружающей среды, техники безопасности и обучении сотрудников. Постоянное совершенствование и интеграция надежных принципов и практик проектирования в применении материалов, продуктов, процессов и услуг позволяет решать любые задачи клиентов компании Хитачи.



### **SET FREE**

### air 365 Max, новая ультрасовременная VRF система

Компания Hitachi, обладающая опытом в области VRF с вертикальным выбросом воздуха, разработала новую линейку, предлагая эксклюзивные технологии в новом VRF air 365 Max.

Уникальные комбинации блоков для 2-х и 3-х трубного применения мощностью от 5 до 96 л.с.





Новый спиральный компрессор Hitachi

#### с впрыском пара

Спиральный компрессор с впрыском пара увеличивает мощность нагрева и охлаждения.

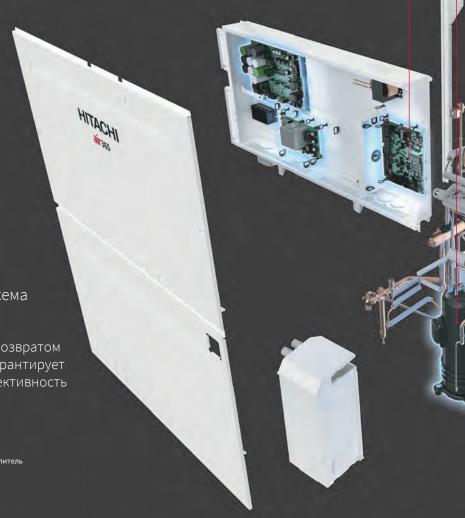
- Высокая эффективность нагрева при температуре -7 °C (температура наружного воздуха)
- Расширенный диапазон рабочих температур наружного воздуха (от -25 до +52 °C).



Технология Smooth Drive 2.0

Позволяет поддерживать точность заданной температуры, обеспечивая внутренние блоки необходимым количеством хладагента в каждый отрезок времени.

- Повышенный комфорт: стабильность температуры окружающей среды
- Высокая производительность при частичной нагрузке: экономия энергии



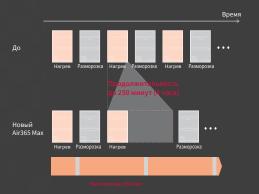



Запатентованная схема возврата масла

Оптимизированный цикл управления возвратом масла потребляет меньше энергии и гарантирует бесшумную работу, что повышает эффективность и комфорт **для пользователей**.







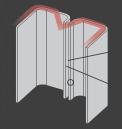

3-х лопастные вентиляторы (80 Па) с конструкцией, улучшающей поток воздуха (низкое энергопотребление)

#### Smart Defrost Интеллектуальная разморозка для поддержания комфорта

**Интеллектуальная** сенсорная технология мгновенно регулирует температуру теплообменника для устранения образования льда и изморози.

- Сокращает количество частых и ненужных циклов оттайки.
- Цикл оттайки выполняется каждые 250 минут (т.е. каждые 4 часа), обеспечивая более продолжительный нагрев и комофрт для пользователей






Режим нагрева

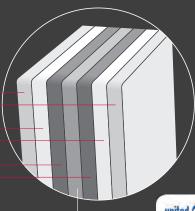
■ Размораживание (включает время запуска для работы в режиме нагрева)

## Антикоррозийный теплообменник c 3 слоями защиты

Запатентованный 3-рядный теплообменник  $\Sigma$ -образной формы состоит из алюминиевых пластин толщиной всего 0,1 мм и характеризуется большой поверхностью теплообмена, что позволяет поддерживать эффективность системы в течение длительного времени

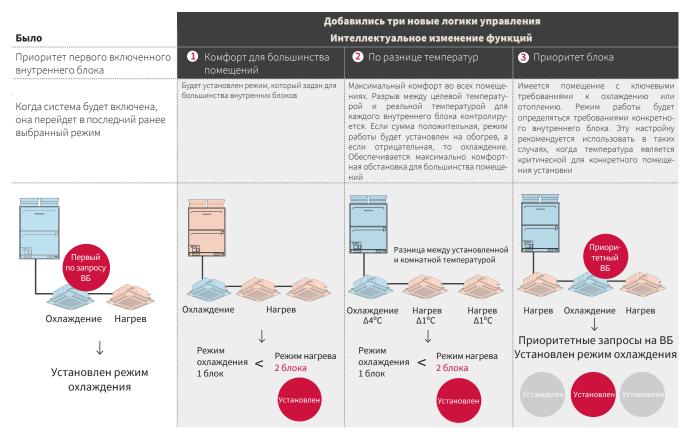







Водоотталкивающее полимерное покрытие

Антикоррозийное покрытие


Обработка теплообменника хроматом фосфорной кислоты

Алюминиевые ребра





## Новая интеллектуальная система автоматического регулирования для повышения комфорта в любое время года



#### Примеры применения 3-х новых режимов регулирования (доступны для двухтрубных систем)

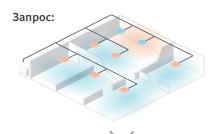


#### Условия:

- Запрос режима охлаждения:2 внутренних блока
- Запрос режима обогрева: 6 внутренних блоков

#### Режим разницы температур между суммой ВБ, работающих на охлаждение

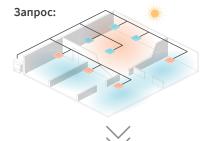
или на нагрев


#### Условия:

- Потребность в охлаждении: общая разница температур дельта 8°C
- Запрос на обогрев: общая разница температур дельта 5°C

### 3 Главный блок

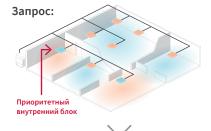
#### Условия:


- Внутренний блок запрашивает режим охлаждения



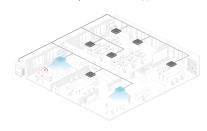


Установлен режим нагрева






#### Результат:


Установлен режим охлаждения





#### Результат:

Установлен режим охлаждения





## Что предлагает Hitachi?





Высокая энергоэффективность

По сравнению с другими системами HVAC средняя экономия электроэнергии для некоторых комбинаций достигает 39%

Высокая гибкость в проектировании

Соответствие любым местным требованиям и ограничениям благодаря ряду улучшений наружных блоков



Простой монтаж

Снижение общей стоимости и времени монтажа благодаря более легкому весу и модульной конструкции VRF



Комфорт

Точное соответствие потребностям нагрева и охлаждения каждой зоны с целью достижения высокого уровня комфорта

- Высокие коэффициенты EER и
- Снижение выбросов СО2
- Снижение энергопотребления.
- Большая производительность при меньшей занимаемой плошали
- Большие длины трасс и перепады высот.
- Увеличенный внешний статический напор.
- Тепловой насос
- FSXNP2E (54 HP)/ FSXNS2E (96 HP).
- Система с рекуперацией тепла FSXNP2E (54 HP)/ FSXNS2E (54 HP).
- Широкая линейка многопортовых блоков переключения режимов CH-Rox
- Улучшенная коррозионная устойчивость теплообменников.

- Более легкий корпус (в среднем на 16%).
- Возможность транспортировки на лифтах.
- Широкая линейка многопортовых блоков переключения режимов CH-Box.
- Благодаря новой упаковке оборудование стало проще поднимать с помощью крана
- Интеллектуальная система управления компрессором: точное поддержание температуры.
- Снижен уровень шума.
- Усовершенствованная технология
- Технология SmoothDrive 2.0 увеличивает производительность системы при частичной загрузке в режиме охлаждения на 65%, в режиме нагрева на 33%.





#### Интеграция системы

Возможность интеграции практически в любые системы управления от индивидуальных до систем управления зданием, что позволяет экономить время и средства

- Решения на базе H-LINK.
- Продвинутые индивидуальные и центральные системы управления.
- Простая интеграция в BMS



#### Простота обслуживания

Простое облуживание по сравнению с водяными системами (чиллер/фанкойл)

- Простой доступ ко всем платам управления.
- Простой доступ к компрессорам и клапанам.
- Интеллектуальная откачка хладагента.
- Широкая линейка многопортовых блоков переключения режимов CH-Box



#### Меньшая стоимость жизненного цикла

Большой жизненный цикл VRF систем, составляющий 20–30 лет, и простота обслуживания позволяет снизить затраты на систему кондиционирования!

- Более высокоэффективная работа благодаря прямому охлаждению.
- Простое обслуживание.
- Высокая точность управления благодаря улучшенным системам диспетчеризации



#### Эстетика

Широкая линейка кассетных и канальных внутренних блоков позволяет вносить минимум изменений в интерьер помещений

- Высокий внешний статический напор наружного блока: возможность скрытого монтажа наружных блоков
- Канальные внутренние блоки позволяют сделать систему кондиционирования «невидимой».
- Кассетные внутренние блоки имеют элегантный дизайн декоративных панелей и не занимают внутренний объем обслуживаемого помещения



## Наружные блоки air365 Max

|                         | Базовые блоки | Полная мощность с системой<br>рекуперации тепла (3-трубная система) | Полная мощность с системой<br>теплового насоса (2-трубная система) |
|-------------------------|---------------|---------------------------------------------------------------------|--------------------------------------------------------------------|
| Серия стандарт          | 8 – 24 л.с.   | 8 – 54 л.с.                                                         | 8 – 96 л.с.                                                        |
| Высокоэффективная серия | 5 – 18 л.с.   | 5 – 54 л.с.                                                         | -                                                                  |

### Базовые блоки (air365 Max)

| Производительность, л.с. | 8             | 10            |    | 12            |  | 14           |   | 16            |  |
|--------------------------|---------------|---------------|----|---------------|--|--------------|---|---------------|--|
| Модель                   | RAS-8FSXNS2E  | RAS-10FSXNS2E |    | RAS-12FSXNS2E |  | RAS-14FSXNS2 | E | RAS-16FSXNS2E |  |
| Производительность, л.с. | 18            |               | 20 |               |  | 22           |   | 24            |  |
| Модель                   | RAS-18FSXNS2E | RAS-20FSXN    |    | RAS-20FSXNS2E |  | 22FSXNS2E    |   | RAS-24FSXNS2E |  |

### Комбинация блоков (air365 Max)

| Производительность, л.с. | 26            | 28            | 30            | 32            | 34            | 36            |
|--------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Модель                   | RAS-26FSXNS2E | RAS-28FSXNS2E | RAS-30FSXNS2E | RAS-32FSXNS2E | RAS-34FSXNS2E | RAS-36FSXNS2E |
| V                        | RAS-12FSXNS2E | RAS-12FSXNS2E | RAS-12FSXNS2E | RAS-14FSXNS2E | RAS-16FSXNS2E | RAS-18FSXNS2E |
| Комбинация               | RAS-14FSXNS2E | RAS-16FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E |
| Производительность, л.с. | 38            | 40            | 42            | 44            | 46            | 48            |
| Модель                   | RAS-38FSXNS2E | RAS-40FSXNS2E | RAS-42FSXNS2E | RAS-44FSXNS2E | RAS-46FSXNS2E | RAS-48FSXNS2E |
| V C                      | RAS-14FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-22FSXNS2E | RAS-22FSXNS2E | RAS-24FSXNS2E |
| Комбинация               | RAS-24FSXNS2E | RAS-22FSXNS2E | RAS-24FSXNS2E | RAS-22FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E |
| Производительность, л.с. | 50            | 52            | 54            | 56            | 58            | 60            |
| Модель                   | RAS-50FSXNS2E | RAS-52FSXNS2E | RAS-54FSXNS2E | RAS-56FSXNS2E | RAS-58FSXNS2E | RAS-60FSXNS2E |
|                          | RAS-14FSXNS2E | RAS-16FSXNS2E | RAS-18FSXNS2E | RAS-14FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E |
| Комбинация               | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E |
|                          | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-24FSXNS2E | RAS-22FSXNS2E | RAS-24FSXNS2E |
| Производительность, л.с. | 62            | 64            | 66            | 68            | 70            | 72            |
| Модель                   | RAS-62FSXNS2E | RAS-64FSXNS2E | RAS-66FSXNS2E | RAS-68FSXNS2E | RAS-60FSXNS2E | RAS-62FSXNS2E |
|                          | RAS-14FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-22FSXNS2E | RAS-22FSXNS2E | RAS-24FSXNS2E |
| Комбинация               | RAS-24FSXNS2E | RAS-22FSXNS2E | RAS-24FSXNS2E | RAS-22FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E |
|                          | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E |
| Производительность, л.с. | 74            | 76            | 78            | 80            | 82            | 84            |
| Модель                   | RAS-64FSXNS2E | RAS-76FSXNS2E | RAS-78FSXNS2E | RAS-80FSXNS2E | RAS-82FSXNS2E | RAS-84FSXNS2E |
|                          | RAS-14FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-14FSXNS2E | RAS-16FSXNS2E | RAS-18FSXNS2E |
| Vaneurania               | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E |
| Комбинация               | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-18FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E |
|                          | RAS-24FSXNS2E | RAS-22FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E |
| Производительность, л.с. | 86            | 88            | 90            | 92            | 94            | 96            |
| Модель                   | RAS-86FSXNS2E | RAS-88FSXNS2E | RAS-90FSXNS2E | RAS-92FSXNS2E | RAS-94FSXNS2E | RAS-96FSXNS2E |
|                          | RAS-14FSXNS2E | RAS-16FSXNS2E | RAS-18FSXNS2E | RAS-22FSXNS2E | RAS-22FSXNS2E | RAS-24FSXNS2E |
| Vouceuranus              | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-22FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E |
| Комбинация               | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E |
|                          | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E | RAS-24FSXNS2E |               |

69

### Базовые блоки (air365 Max Pro)

| Производительность, л.с. | 5             | 6             | 8             | 10            | 12            |
|--------------------------|---------------|---------------|---------------|---------------|---------------|
| Модель                   | RAS-5FSXNS2E  | RAS-6FSXNS2E  | RAS-8FSXNS2E  | RAS-10FSXNS2E | RAS-12FSXNS2E |
| Производительность, л.с. | 14            | 16            | 18            |               |               |
| Модель                   | RAS-14FSXNS2E | RAS-16FSXNS2E | RAS-18FSXNS2E |               |               |

### Комбинация блоков (air365 Max Pro)

| Производительность, л.с. | 20            | 22            | 24            | 26            | 28            | 30            |
|--------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Модель                   | RAS-20FSXNP2E | RAS-22FSXNP2E | RAS-24FSXNP2E | RAS-26FSXNP2E | RAS-28FSXNP2E | RAS-30FSXNP2E |
| Комбинация               | RAS-10FSXNP2E | RAS-12FSXNP2E | RAS-12FSXNP2E | RAS-16FSXNP2E | RAS-16FSXNP2E | RAS-18FSXNP2E |
|                          | RAS-10FSXNP2E | RAS-10FSXNP2E | RAS-12FSXNP2E | RAS-10FSXNP2E | RAS-12FSXNP2E | RAS-12FSXNP2E |
| Производительность, л.с. | 32            | 34            | 36            | 38            | 40            | 42            |
| Модель                   | RAS-32FSXNP2E | RAS-34FSXNP2E | RAS-36FSXNP2E | RAS-38FSXNP2E | RAS-40FSXNP2E | RAS-42FSXNP2E |
| Комбинация               | RAS-18FSXNP2E | RAS-18FSXNP2E | RAS-18FSXNP2E | RAS-14FSXNP2E | RAS-14FSXNP2E | RAS-14FSXNP2E |
|                          | RAS-14FSXNP2E | RAS-16FSXNP2E | RAS-18FSXNP2E | RAS-12FSXNP2E | RAS-14FSXNP2E | RAS-14FSXNP2E |
|                          | -             | -             | -             | RAS-12FSXNP2E | RAS-12FSXNP2E | RAS-14FSXNP2E |
| Производительность, л.с. | 44            | 46            | 48            | 50            | 52            | 54            |
| Модель                   | RAS-44FSXNP2E | RAS-46FSXNP2E | RAS-48FSXNP2E | RAS-50FSXNP2E | RAS-52FSXNP2E | RAS-54FSXNP2E |
| Комбинация               | RAS-18FSXNP2E | RAS-18FSXNP2E | RAS-18FSXNP2E | RAS-18FSXNP2E | RAS-18FSXNP2E | RAS-18FSXNP2E |
|                          | RAS-14FSXNP2E | RAS-14FSXNP2E | RAS-16FSXNP2E | RAS-18FSXNP2E | RAS-18FSXNP2E | RAS-18FSXNP2E |
|                          | RAS-12FSXNP2E | RAS-14FSXNP2E | RAS-14FSXNP2E | RAS-14FSXNP2E | RAS-16FSXNP2E | RAS-18FSXNP2E |
|                          |               |               |               |               |               |               |





## Обзор возможностей и преимуществ

|                                 | Особенность                                                                                         | Возможность                                                                                                                                                                                                                                | Преимущество                                                                                                                                                                                                                                    |
|---------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Архитекторы и<br>проектировщики | VRF-система охлаждение/<br>нагрев                                                                   | <ul> <li>Точное поддержание параметров в нескольких зонах.</li> <li>Умное переключение (без центрального пульта управления) между режимами охлаждение/нагрев – выбор из трёх дополнительных доступных вариантов.</li> </ul>                | <ul> <li>Исключительная гибкость проектирования.</li> <li>Уровень комфорта оптимальный во всех<br/>помещениях.</li> <li>Возможность настройки требуемых параметров, когда температура является критической для конкретного помещения</li> </ul> |
|                                 | VRF-система с<br>рекуперацией тепла                                                                 | <ul> <li>Одновременная работа внутренних блоков одной системы в разных режимах.</li> <li>Перенос тепла между обслуживаемыми зонами здания.</li> <li>Наличие внутренних блоков, работающих только в режиме охлаждения</li> </ul>            | <ul> <li>Максимальный уровень эффективности и комфорта.</li> <li>Исключительная гибкость проектирования</li> </ul>                                                                                                                              |
|                                 | Новые блоки<br>переключения режимов                                                                 | <ul> <li>Многопортовые СН-блоки (до 16).</li> <li>Отсутствие дренажной трубы.</li> <li>Самый компактный корпус в классе.</li> <li>Самый легкий вес в классе.</li> <li>Перепад высот между СН-блоком и внутренним блоком до 40 м</li> </ul> | • Дает свободу при проектировании. • Снижение стоимости системы                                                                                                                                                                                 |
|                                 | Малая занимаемая<br>площадь наружного блока                                                         | • Меньшие требуемые площади размещения                                                                                                                                                                                                     | • Широкие возможности по размещению наружных блоков                                                                                                                                                                                             |
|                                 | Модульные НБ                                                                                        | • Обеспечение гибкости подбора систем для каждого проекта                                                                                                                                                                                  | <ul> <li>Упрощенный процесс проектирования</li> <li>Конфигурирование элементов холодильной станции в зависимости от размеров монтаж ной площадки</li> </ul>                                                                                     |
|                                 | Суммарная длина<br>трубопроводов до 1000 м                                                          | • Использование для проектов с большими длинами трасс                                                                                                                                                                                      | • Дает свободу при проектировании                                                                                                                                                                                                               |
|                                 | Высокий внешний<br>статический напор<br>вентилятора НБ 80 Па                                        | • Больше возможностей по размещению на-<br>ружных блоков, в том числе и в технических<br>помещениях (с использованием воздухово-<br>дов)                                                                                                   | <ul> <li>Меньшая длина труб и ниже затраты на монтаж.</li> <li>Выше эффективность.</li> <li>Эстетичный внешний вид здания</li> </ul>                                                                                                            |
|                                 | Температурный диапазон<br>работы                                                                    | • Диапазон рабочих температур по наружному воздуху: -20 ~ +48 °C для серии стандарт; -20 ~ +52 °C для высокоэффективной серии                                                                                                              | • Дает свободу при проектировании                                                                                                                                                                                                               |
|                                 | Режим бесшумной работы                                                                              | • Три шага снижения уровня звуковой мощ-<br>ности/ звукового давления                                                                                                                                                                      | • Соответствие местным нормам по шумам                                                                                                                                                                                                          |
|                                 | Открытый монтаж                                                                                     | <ul> <li>Максимальная гибкость проектирования.</li> <li>Отсутствие необходимости в подвесных и<br/>фальш-потолках</li> </ul>                                                                                                               | • Снижение стоимости системы.<br>• Идеально для реконструкции исторических объектов                                                                                                                                                             |
|                                 | Скрытый монтаж<br>(канальные системы)                                                               | <ul> <li>Модернизация систем кондиционирования<br/>с использованием существующей системы<br/>воздуховодов.</li> <li>Подходит для помещений, в которых недопустимо, чтобы были видны элементы системы<br/>кондиционирования</li> </ul>      | • Снижение общей стоимости системы.<br>• Не влияет на интерьер помещения                                                                                                                                                                        |
|                                 | Загрузка наружного блока<br>внутренними                                                             | • Загрузка наружного блока до 200%                                                                                                                                                                                                         | • Снижение стоимости системы                                                                                                                                                                                                                    |
|                                 | Программа подбора VRF                                                                               | • Интуитивно понятный и быстрый процесс подбора оборудования                                                                                                                                                                               | • Корректный подбор системы кондиционирования                                                                                                                                                                                                   |
|                                 | Закрытый протокол связи<br>H-LINK II, который позволяет<br>объединять большое<br>количество НБ и ВБ | • В единой сети управления может быть объединено оборудование разных типов RAC, PAC и VRF                                                                                                                                                  | <ul><li>Дает свободу при проектировании.</li><li>Снижение стоимости системы</li></ul>                                                                                                                                                           |
|                                 | Маленькие типоразмеры на 5 и 6 л.с.                                                                 | • Применение для небольших объектов                                                                                                                                                                                                        | • Гибкость проектирования                                                                                                                                                                                                                       |
|                                 | Снижен вес наружных<br>блоков                                                                       | • Удобство транспортировки, установки, размещения                                                                                                                                                                                          | • Широкие возможности по размещению наружных блоков                                                                                                                                                                                             |
|                                 | Увеличен температурный диапазон работы НБ:<br>-10 °С в режиме охлаждения и -25 °С в режиме нагрева  | • Возможность установки системы VRF в регионах с низкими температурами окружающей среды                                                                                                                                                    | • Расширение климатических границ                                                                                                                                                                                                               |
|                                 | 4 логики переключения между режимами охлаждение/нагрев                                              | • Интеллектуальное управление работой системы                                                                                                                                                                                              | • Обеспечение комфорта во всех кондициони<br>руемых помещениях или нескольких зонах<br>одного помещения                                                                                                                                         |

| $\bigcirc$               | Малая занимаемая площадь<br>наружного блока | • Меньшие требуемые площади размещения                                                                                                                                                                                                                                                                                                                                                                                           | • Ниже стоимость транспортировки и монтажа                                                                            |
|--------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Контракторы и монтажники | Новые блоки переключения<br>режимов         | <ul> <li>Многопортовые СН-блоки (до 16 пар).</li> <li>Отсутствие дренажной трубы.</li> <li>Самый компактный корпус в классе.</li> <li>Самый легкий вес в классе</li> </ul>                                                                                                                                                                                                                                                       | <ul><li>Ниже стоимость транспортировки.</li><li>Сокращение времени монтажа</li></ul>                                  |
|                          | Легкий корпус                               | • Корпус наружного блока в среднем на 16% легче по сравнению с предыдущей серией                                                                                                                                                                                                                                                                                                                                                 | • Ниже стоимость транспортировки и монтажа                                                                            |
|                          | Новая конструкция корпуса наружного блока   | • Удобство крепления для подъёма оборудования с помощью крана                                                                                                                                                                                                                                                                                                                                                                    | • Уменьшение времени монтажа и снижение его стоимости                                                                 |
|                          | Простота монтажа                            | <ul> <li>Подвод труб для подключения к наружному<br/>блоку с разных сторон.</li> <li>Компактные и легкие внутренние блоки,<br/>что позволяет поднимать и перемещать их<br/>без специальных приспособлений</li> </ul>                                                                                                                                                                                                             | • Уменьшение времени монтажа и снижение его стоимости                                                                 |
|                          | Быстрая и надежная доставка оборудования    | • Своевременная доставка компонентов на место проведения работ                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Высокая эффективность монтажных работ.</li> <li>Позволяет эффективно планировать монтажные работы</li> </ul> |
|                          | Простой доступ для обслуживания             | <ul> <li>Разделенные верхняя (на блоке управления) и нижняя (на камере компрессора) сервисные крышки.</li> <li>Легкий доступ к платам управления и к семисегментному дисплею.</li> <li>Больший объем нижней секции, более удобный доступ к компрессору и всем клапанам.</li> <li>Откачка хладагента: специальный алгоритм, с принудительным открытием клапанов для максимально полной эвакуации хладагента из системы</li> </ul> | • Сокращение времени ремонта и сервисного обслуживания                                                                |
|                          | Увеличенная жесткость корпуса               | • Коэффициент жесткости увеличен на 36,7%                                                                                                                                                                                                                                                                                                                                                                                        | • Увеличение срока службы                                                                                             |
|                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                       |

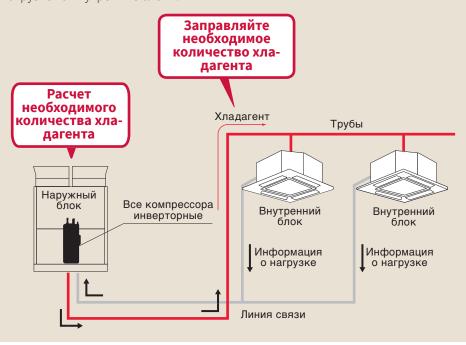
Возможность

Преимущество

Особенность



## Обзор возможностей и преимуществ


|              |                   | Особенность                                                                                        | Возможность                                                                                                                                                                    | Преимущество                                                                                                                                                                                              |
|--------------|-------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Собственники | Система           | Новый алгоритм ротации работы компрессоров в многоблочных наружных секциях                         | • При работе многомодульного наружного бло-<br>ка с частичной загрузкой, модули работают<br>поочередно, чтобы обеспечить равномерную<br>выработку ресурса оборудования         | <ul><li>Оптимизация энергоэффектив-<br/>ности.</li><li>Увеличение срока службы.</li><li>Повышение надежности</li></ul>                                                                                    |
|              |                   | Наличие режима экстренной эксплуатации                                                             | • В случае отказа одного из наружных блоков холодильной станции, можно продолжить работу системы за счет других наружных блоков того же холодильного контура                   | <ul> <li>Сокращается время простоя<br/>системы.</li> <li>Поддержание комфортных<br/>параметров даже в экстренных<br/>ситуациях</li> </ul>                                                                 |
|              |                   | Энергоэффетивность, оптимизированная под работу с частичной загрузкой                              | • Самый высокий коэффициент APF в отрасли для мультизональных систем                                                                                                           | • Экономия электроэнергии                                                                                                                                                                                 |
|              |                   | Индивидуальный комфорт для каждого пользователя                                                    | • Система с рекуперацией тепла позволяет внутренним блокам одного холодильного контура работать в разных режимах, в зависимости от потребностей пользователей                  | <ul> <li>Эффективные охлаждение и<br/>нагрев.</li> <li>Максимальный уровень ком-<br/>форта для пользователя</li> </ul>                                                                                    |
|              |                   | Режим принудительного снижения уровня шума                                                         | • Позволяет пользователям снижать уровень шума на определенные значения, активируя различные режимы                                                                            | <ul> <li>Сверхтихие (24,5–28,0 ДБ для внутренних блоков).</li> <li>Идеально для объектов, где наружные блоки расположены не на крыше здания и где действуют строгие ограничения по уровню шума</li> </ul> |
|              |                   | Новые блоки переключения режимов                                                                   | <ul><li>Более тихая работа.</li><li>Отсутствие дренажной трубы.</li><li>Меньшее количество расширительных вентилей</li></ul>                                                   | <ul><li>Ниже уровень звукового давления.</li><li>Простота обслуживания</li></ul>                                                                                                                          |
|              | Компрессор        | Новый спиральный компрессор Hitachi с впрыском пара                                                | • Разработан для достижения максимальной эффективности в нормальных условиях работы                                                                                            | <ul><li>Высокий EER.</li><li>Высокий APF.</li><li>Высокий COP</li></ul>                                                                                                                                   |
|              |                   | Новый кожух для ком-<br>прессора                                                                   | • Новый кожух позволил снизить шум от ком-<br>прессора                                                                                                                         | • Снижение общего уровня шума                                                                                                                                                                             |
|              |                   | Изменение частоты компрессора с шагом 0,1 Гц                                                       | • Плавное регулирование, точное соответствие необходимой производительности                                                                                                    | <ul><li>Максимальный уровень комфорта.</li><li>Экономия электроэнергии</li></ul>                                                                                                                          |
|              | Наружные<br>блоки | Ограничение потребляе-<br>мой мощности                                                             | • Пользователю доступен широкий диапазон ограничений потребляемой мощности от 100% до 60%, т.е. пользователь может задать границу максимального энергопотребления оборудования | <ul> <li>Ограничение потребляемой мощности.</li> <li>Ограничение износа оборудования.</li> <li>Снижение уровня шума</li> </ul>                                                                            |
|              |                   | Плавное регулирование производительности благодаря применению новой логики управления компрессором | • Более эффективное управление компрессором                                                                                                                                    | • Экономия электроэнергии.<br>• Точное поддержание температуры в помещении                                                                                                                                |
|              |                   | Ограничение производи-<br>тельности                                                                | • Позволяет настроить работу с переменной<br>загрузкой с интервалами влк./выкл. ограни-<br>чения от 10 до 20 минут                                                             | • Экономия электроэнергии. • Ограничение расходов                                                                                                                                                         |
|              |                   | Низкий уровень шума                                                                                | <ul> <li>Дополнительный кожух компрессора</li> <li>Новый профиль вентилятора + новый профиль воздушного канала</li> </ul>                                                      | • Более тихая работа                                                                                                                                                                                      |
|              |                   | Запатентованный<br>Σ-образный теплообменник                                                        | <ul><li>Увеличенная площадь теплообмена:</li><li>6000 алюминиевых ребер</li><li>350 медных трубок</li></ul>                                                                    | • Более эффективная работа                                                                                                                                                                                |
|              |                   | Новый профиль вентиля-<br>торов                                                                    | • Более длинные лопатки вентилятора позволили увеличить расход воздуха на 25%, и увеличить внешнее статическое давление                                                        | <ul><li>Более эффективная работа.</li><li>Увеличение ресурса двигателей</li></ul>                                                                                                                         |

|                        | Особенность           |                                                         | Возможность                                                                                                                                                          | Преимущество                                                                                                                                                                                     |  |
|------------------------|-----------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Собственники<br>зданий | Внутренние<br>блоки   | Внешнее статическое давление канальных блоков до 220 Па | • Регулируемое внешнее статическое давление                                                                                                                          | • Возможность работы с воздухо-<br>водами разной длины                                                                                                                                           |  |
|                        |                       | Широкая линейка                                         | • Внутренние блоки, которые позволят удов-<br>летворить требования любого заказчика                                                                                  | • Возможность вписаться в<br>любой интерьер                                                                                                                                                      |  |
|                        |                       | Опциональные датчики движения и присутствия             | • Изменение уставок оборудования в за-<br>висимости от того, есть ли пользователь<br>в помещении или нет                                                             | • Экономия электроэнергии                                                                                                                                                                        |  |
|                        | Система<br>управления | Протокол «H-LINK II»                                    | <ul> <li>Возможность управления большим количеством наружных и внутренних блоков из одной точки.</li> <li>Широкий выбор устройств центрального управления</li> </ul> | <ul> <li>Высокий уровень комфорта<br/>для пользователей.</li> <li>Экономия электроэнергии.</li> <li>Усовершенствованное управление системой</li> </ul>                                           |  |
|                        |                       | Управление температурой                                 | • Настройка температуры с шагом 0,5/1 °C. • Настойка скорости вращения вентилятора                                                                                   | <ul> <li>Автоматическая регулировка<br/>в зависимости от времени<br/>суток.</li> <li>Дополнительные опции, по-<br/>зволяющие соответствовать<br/>требованиям различных про-<br/>ектов</li> </ul> |  |
|                        |                       | Шлюз из H-LINK II<br>для интеграции в BMS               | • Возможно встраивать системы VRF в системы<br>управления зданием (например Metasys®)<br>с практически неограниченными возмож-<br>ностями                            | <ul> <li>Оптимизированное управление.</li> <li>Экономия электроэнергии.</li> <li>Унифицированный интерфейс для систем HVAC</li> </ul>                                                            |  |

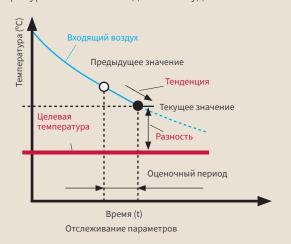


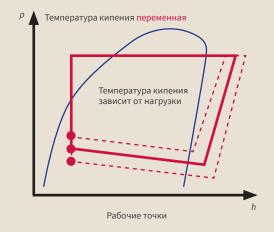
#### Плавное регулирование

Благодаря высокой плавности регулирования производительности компрессора, наружный блок подает во внутренние блоки необходимое количество холодильного агента, рассчитанное на основе информации о нагрузке на внутренние блоки. Это позволяет достичь высокой энергоэффективности оборудования и повышения уровня комфорта в обслуживаемых помещениях из-за более точного поддержания температуры воздуха.



#### Интеллектуальный контроль температуры кипения хладагента


Повышение температуры кипения хладагента имеет свои плюсы и минусы:


| Высокая температура кипения                                                                                              | Низкая температура кипения     |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Работа компрессора с меньшей частотой вращения — выше сезонная энергоэффективность                                       | • Более быстрый выход на режим |
| Леньшее осушение воздуха                                                                                                 |                                |
| Повышение температуры воздуха на выходе из внутреннего блока — снижение риска попадания холодных потоков на пользователя |                                |
|                                                                                                                          |                                |
| ЭФФЕКТИВНОСТЬ                                                                                                            | КОМФОРТ                        |

#### Интеллектуальный контроль температуры кипения хладагента

Интеллектуальное управление температурой кипения хладагента является адаптивным. Если тепловая нагрузка помещения снижается или температура воздуха в помещении приближается к целевой, температура кипения хладагента будет повышаться.

В противном случае, если тепловая нагрузка будет высокой или температура воздуха в помещении значительно выше целевой, температура кипения хладагента снизится, а частота вращения компрессора увеличится.





| Разница между<br>целевой температурой<br>и температурой воздуха<br>в помещении | Скорость<br>достижения<br>установленной<br>температуры |
|--------------------------------------------------------------------------------|--------------------------------------------------------|
| • Большая                                                                      | • Большая                                              |
| • Маленькая                                                                    | • Быстро                                               |

| Температура<br>кипения | Частота<br>компрессора |
|------------------------|------------------------|
| • Снижается            | • Повышается           |
| • Повышается           | • Снижается            |

#### Переговорные



Высокая потребность в холоде: нагрузка от людей (переменная), компьютеры и солнце

# Температура кипения хладагента снижается

Температура воздуха на выходе = 8 °C. Холодопроизводительность = 100%, номинальное энергопотребление.

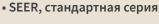
#### Офисное помещение

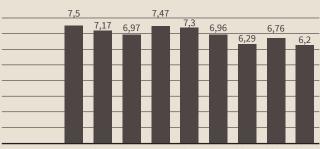


Низкая потребность в холоде: стабильная нагрузка

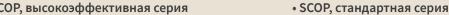
#### Температура кипения хладагента повышается

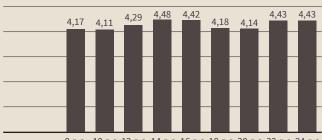
Температура воздуха на выходе = 16 °C. Холодопроизводительность = 53%, 30% экономия в энергопотреблении.





#### Высокая энергоэффективность

Благодаря применению вновь спроектированных компонентов: компрессора и теплообменника, air365 Max достигает высоких показателей энегоэффективности.


#### Коэффициенты энергоэффективности








8 л.с. 10 л.с. 12 л.с. 14 л.с. 16 л.с. 18 л.с. 20 л.с. 22 л.с. 24 л.с.





8 л.с. 10 л.с. 12 л.с. 14 л.с. 16 л.с. 18 л.с. 20 л.с. 22 л.с. 24 л.с.

## Усовершенствованный компрессор

5 л.с. 6 л.с. 8 л.с. 10 л.с. 12 л.с. 14 л.с. 16 л.с. 18 л.с.



#### Более точное управление производительностью

Высокая производительность и эффективность достигаются за счет использования нового специально разработанного компрессора с впрыском пара с превосходной точностью управления частотой вращения компрессора — 0,1 Гц. Еще одной особенностью является расширенный диапазон регулирования частот.



#### Настройка температуры воздуха на выходе из внутреннего блока

Основные потребности в охлаждении при использовании VRF систем могут зависеть от следующих условий:

- помещение с переменным количеством людей → система с высокой холодопроизводительностью и низкой температурой кипения;
- помещение со стабильными тепловыми нагрузками > энергоэффективность и комфорт могут быть оптимизированы при высокой температуре кипения. Низкая температура выходящего воздуха может доставлять дискомфорт пользователям

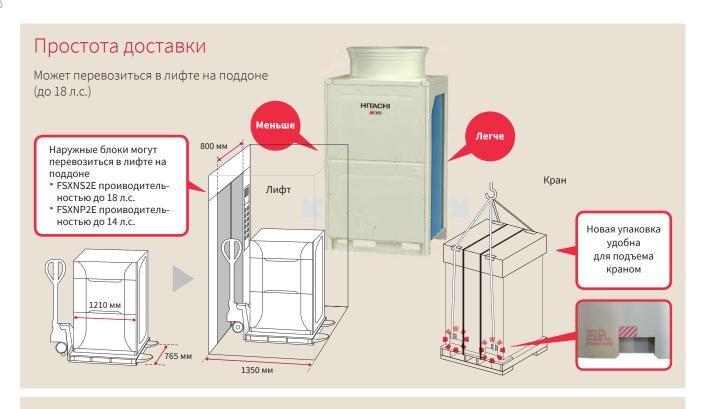
Основные проблемы при использовании VRF систем:

- низкая температура воздуха на выходе из внутреннего
- компромисс между комфортом и холодопроизводительностью.

| Минимальная<br>температура воздуха<br>на выходе<br>из внутреннего блока | Уровень комфорта | Энергопотребление | Холодопроизводительность |
|-------------------------------------------------------------------------|------------------|-------------------|--------------------------|
| 8°C                                                                     | <b>\$</b> \$     | Стандарт          | 100%                     |
| 12 °C                                                                   | * * *            | Стандарт          | 76%                      |
| 14 °C                                                                   | * * * *          | -15%              | 65%                      |
| 16 °C                                                                   | * * * * * *      | -30%              | 53%                      |

## Настройка температуры на выходе из внутреннего блока

Пользователь может настроить минимальное значение температуры воздуха на выходе из каждого внутреннего блока индивидуально. Это позволяет учесть предпочтение пользователей любого помещения и особенности обслуживаемого помещения.


Настройку можно выполнить с помощью проводного пульта управления PC-ARFG2-E.



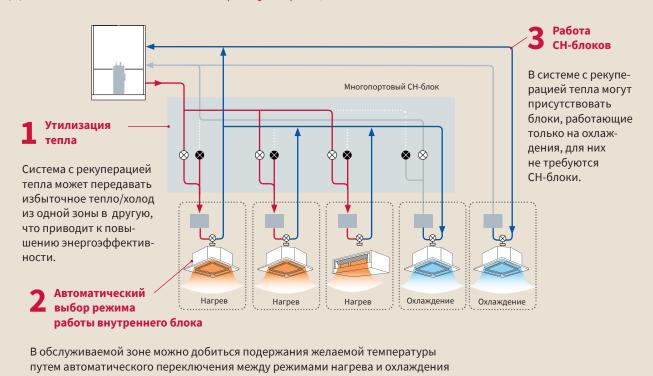


CS Net Manager 2





#### Увеличено внешнее статическое давление Внешнее статическое давление вентиляторов наружного блока может достигать 80 Па. Новая модель Предыдущая Стена Стена модель 60 Па 80 Па Воздуховод Воздуховод Больше вариантов установки наружных блоков Только 60 Па в помещении или за жалюзи. Меньшая длина трубопроводов. Ниже стоимость монтажа. Эстетичный внешний вид здания. Наружный блок Стена Стена Наружный блок




## Система с рекуперацией тепла

Мультизональные системы охлаждение/нагрев строятся по двухтрубной схеме и позволяют обеспечивать охлаждение или нагрев большого колиства зон обслуживания с высокой точностью поддержания параметров.



#### Достоинства системы с рекуперацией тепла









Режим работы изменяется в зависимости от значений задаваемой температуры и температуры воздуха на входе во внутренний блок.







Система с рекуперацией тепла, способна одновременно нагревать и охлаждать различные помещения.

# Офис (холодный период года)



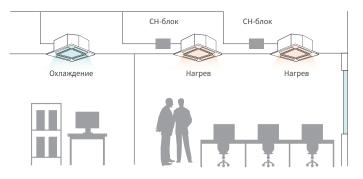


В системе с рекуперацией тепла могут использоваться блоки работающие только на охлаждения, для них не требуются CH-box.

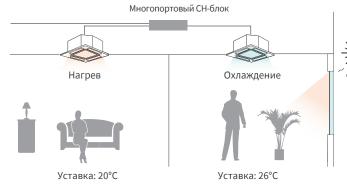
# СН-блоки рекуперации тепла

Сокращение расходов на отопление и охлаждение за счет рекуперации тепла

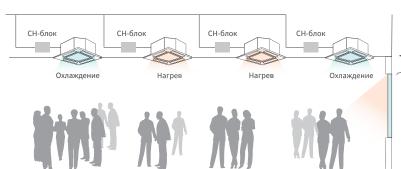
#### СН-блок однопортовый


- До 8 внутренних блоков на один СН-блок
- Компактность
- Легкость
- Подключение только 2 трубок (газопроводов)
- Без отвода конденсата




#### Многопортовые СН-блоки

- До 96 внутренних блоков на один СН-блок
- Низкая высота
- Малый объем
- Легкость
- Без отвода конденсата






- **Экономия энергии**: повышение производительности на 40 50%
- Оптимальный комфорт: одновременный обогрев и охлаждение воздуха в разных помещених
- Внутренний блок может работать круглый год в режиме охлаждения (для серверных)

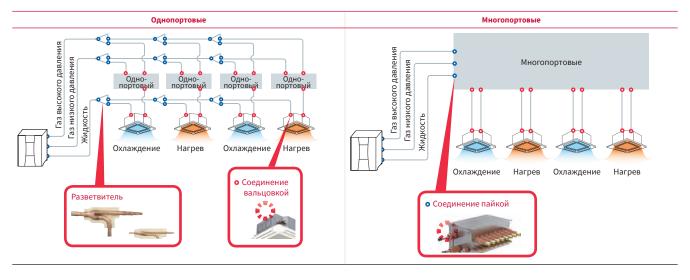


- Индивидуальный контроль температуры нагрева и охлаждения в каждой комнате



 Одновременное охлаждение и обогрев, даже для одной и той же зоны, при работе с одним и тем же холодильным контуром

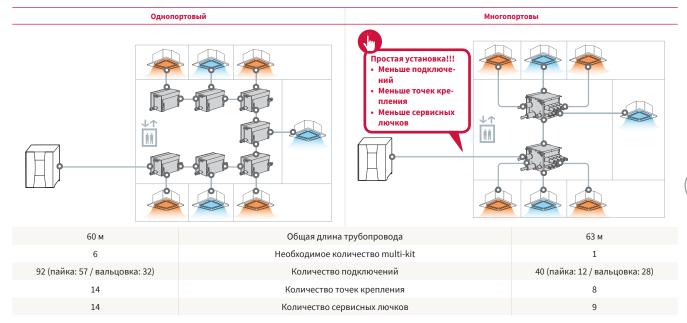



united **2** elements

# Гибкость проектирования

# Широкая линейка

|                                           | Тип                                                             | Однопо      | ртовые      |             | Мн          | огопортовые |              |  |
|-------------------------------------------|-----------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|--------------|--|
|                                           | Модель                                                          | CH-AP160SSX | CH-AP280SSX | CH-AP04MSSX | CH-AP08MSSX | CH-AP12MSSX | CH-AP16MSSX  |  |
| Изображение                               |                                                                 | F           |             | 1           |             | A STANDARD  | - Amazina    |  |
| Габаритные размеры                        | $(B \times \coprod \times \Gamma)$ , мм                         | 191×30      | 01×214      | 260×303×352 | 260×543×352 | 260×783×352 | 260×1023×352 |  |
| Вес нетто, кг                             |                                                                 | 6₩          | 6₩          | 14          | 25          | 36          | 47           |  |
|                                           | Электропитание, В/ф/Гц                                          |             |             |             | 230/1/50    |             |              |  |
| Электрические<br>параметры                | Потребляемая мощность, Вт                                       | 5           | 5           | 11,2        | 22,4        | 33,6        | 44,8         |  |
|                                           | Ток, А                                                          | 0,1         | 0,1         | 0,2         | 0,4         | 0,6         | 0,8          |  |
| Максимальная произ<br>подсоединяемых вну  |                                                                 | 16          | 28          | 44.8        | 85          | 85          | 85           |  |
| Количество портов                         |                                                                 | 1           | 1           | 4           | 8           | 12          | 16           |  |
| Максимальное колич<br>внутренних блоков к | ество подсоединяемых<br>1 порту                                 | 7           | 8           | 6           | 6           | 6           | 6            |  |
| Максимальная дли-<br>на трубопровода, м   | Между СН-блоком<br>и внутренними блоками                        | 40 ↑        |             |             |             |             |              |  |
|                                           | Между СН-блоками                                                |             |             |             | 15          |             |              |  |
| Максимальный                              | Между СН-блоками<br>и внутренними блоками                       | 15          |             |             |             |             |              |  |
| перепад высот, м                          | Между подключёнными<br>к одному СН-блоку<br>внутренними блоками |             |             |             | 4           |             |              |  |


## Конфигурация систем



83



#### Что лучше?

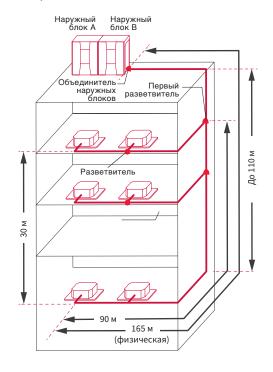


# Преимущества СН-блоков НІТАСНІ



Гибкость проектирования

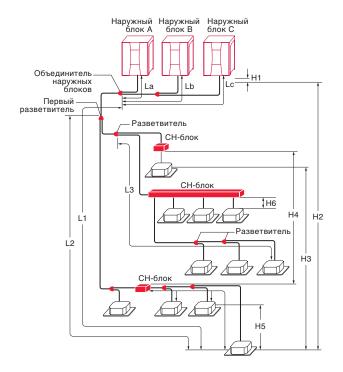







# Длины трасс и перепады высот


# Двухтрубная схема (система охлаждение/нагрев)


| Показат                                                      | Значение, м             |      |
|--------------------------------------------------------------|-------------------------|------|
| Суммарная длина трубопровод                                  | ОВ                      | 1000 |
| Максимальная физическая (экв<br>провода между НБ и дальним В | 200 (225)               |      |
| Максимальная длина трубопро                                  | вода от первого рефнета | 100  |
| Перепад высот между                                          | Наружный блок выше      | ≤110 |
| наружным блоком и внутренним блоком                          | Наружный блок ниже      | 40   |
| Перепад высот между ВБ                                       |                         | 40   |

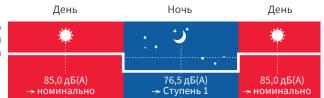


# Трехтрубная схема (система с рекуперацией тепла)

|                                                          | Показатель                           |            | Значение, м |
|----------------------------------------------------------|--------------------------------------|------------|-------------|
| Суммарная длина труб                                     | _                                    | 1000       |             |
| Максимальная физиче<br>длина трубопровода м              |                                      | L1         | 200 (225)   |
| Максимальная длина т<br>рефнетом<br>и наружными блоками  | .,                                   | La, Lb, Lc | 25          |
| Максимальная длина т<br>го рефнета                       | рубопровода от перво-                | L2         | 100         |
| Максимальная длина т<br>рефнетом<br>и внутренними блокам | L3                                   | 40         |             |
| Максимальная длина т<br>СН-блоком<br>и внутренним блоком | _                                    | 40         |             |
| Перепад высот между<br>блока                             | модулями наружного                   | H1         | 2           |
| Перепад высот                                            | Наружный блок выше                   |            | ≤110        |
| между<br>наружным блоком<br>и внутренним<br>блоком       | Наружный блок ниже                   | H2         | 40          |
| Перепад высот между системы (трехтрубной системы         | НЗ                                   | 40         |             |
| Перепад высот между                                      | H4                                   | 40         |             |
| Перепад высот между подключенными к одн                  | внутренними блоками,<br>ому СН-блоку | H5         | 4           |
| Перепад высот между<br>блоком                            | внутренним и СН-                     | H6         | ≤15         |

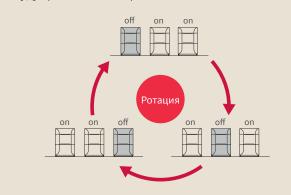





# Адаптивность

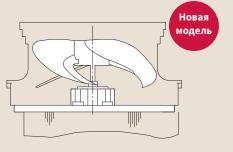
#### Режим бесшумной работы

Пользователь с помощью проводного пульта управления имеет возможность выбрать три ступени регулирования уровня шума наружного блока при работе в ночное время. Можно назначить время активации ночного режима работы с учетом параметров окружающей среды.


|           | 18 л.с. (50,0 кВт) | 42 л.с. (118,0 кВт) |
|-----------|--------------------|---------------------|
| Ступени   | Уровень звуко      | вой мощности        |
| Номинал   | 85,0               | 87,0                |
| Ступень 1 | 81,5               | 84,0                |
| Ступень 2 | 76,5               | 79,0                |
| Ступень 3 | 71,5               | 74,0                |

Уровень звуковой мощности




# Ротация работы наружных блоков

При работе с неполной загрузкой многомодульного наружного блока, с целью равномерной выработки ресурса, наружные блоки (модули) будут работать попеременно.



#### Вентилятор

Профиль вентилятора с удлиненными лопастями и его расположение выше теплообменника позволили снизить шумовые характеристики оборудования.



#### Режим экстренной работы

В случае выхода из строя одного из модулей холодильной станции, можно активировать режим эксплуатации, который позволит работать исправным модулям и частично снимать теплоизбытки обслуживаемых помещений.



#### Компрессор

Компактный и высокоскоростной спиральный компрессор с впрыском пара защищен специальным кожухом, благодаря которому уровень шума компрессора удалось снизить на 2 дБ(A).

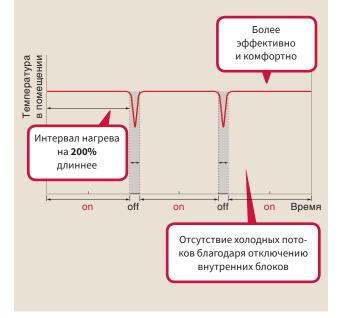


# Низкий уровень шума

благодаря изменению конструкции двух элементов

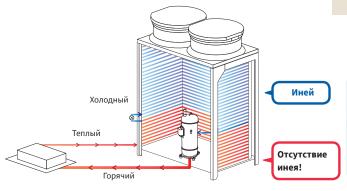
| Показат               |                 | Высокоэфф | рективная се | рия FSXN2P |      | Серия Стандарт FSXNS2E |      |      |      |      |      |
|-----------------------|-----------------|-----------|--------------|------------|------|------------------------|------|------|------|------|------|
| Производительность    | НР              | 5         | 6            | 8          | 10   | 12                     | 8    | 10   | 12   | 14   | 16   |
| наружного блока       | Охлаждение, кВт | 14,0      | 16,0         | 22,4       | 28,0 | 33,5                   | 22,4 | 28,0 | 33,5 | 40,0 | 45,0 |
| Уровень звуковой мощн | 75              | 78        | 77           | 82         | 83   | 80                     | 82   | 82   | 85   | 85   |      |




# Оттайка

Во время работы в режиме нагрева для предотвращения обмерзания теплообменника наружного блока в его нижнюю часть подается жидкий хладагент с температурой 5–20 °C (перед окончательным дросселированием).

# Более эффективный алгоритм оттайки


Благодаря оригинальной функции Hitachi, которая позволяет отслеживать состояние теплообменника, система может определять степень его обмерзания и регулировать интервалы между циклами оттаивания. Максимальный интервал был увеличен более чем на 200%, от 120 мин до 250 мин.

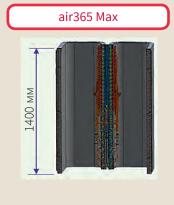
Теперь режим оттайки активируется, когда это действительно необходимо, а не каждые два часа. В результате в обслуживаемых помещениях гарантируется более комфортная среда за счет более продолжительного нагрева.



# 










Увеличенная площадь теплопередачи обеспечивает большую теплопроизводительность при низких температурах окружающей среды

# Предыдущее поколение

Благодаря новой конструкции общая производительность теплообменника увеличилась на 25,2% по сравнению с предыдущим поколением модулей



# Особая структура каналов хладагента

(только для серии FSXNP2E — сдвоенный вентилятор)

В моделях высокоэффективной серии используются теплообменные аппараты с особой структурой каналов. Теплообменник разделяется на две части — верхнюю и нижнюю, причем нижняя имеет более узкие каналы, что приводит к увеличению скорости потока хладагента и увеличению его теплоотдачи. Это позволяет достигать высоких показателей энергоэффективности, особенно при работе с малыми нагрузками.





Высокоэффективная

серия air365Max Pro

















#### Универсальные наружные блоки

Наружные блоки могут применяться как в составе двухтрубных, так и в составе трехтрубных схем.

#### Высокая энергоэффективность

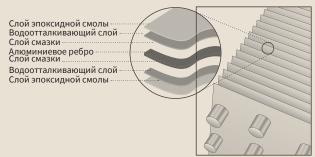

Благодаря своим сезонным показателям энергоэффективности (SEER 8.33 и SCOPE 5.06) высокоэффективная линейка air365Max Pro превосходит требования ERP 2021.

#### Широкий диапазон производительностей

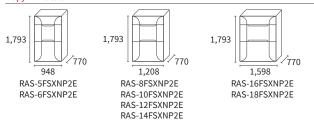
Линейка высокоэффективных наружных ков air365Max Pro представлена модулями производительностью от 5 до 18 л.с., которые могут объединяться в холодильные станции производительностью до 54 л.с. в случае систем с рекуперацией тепла и производительностью до 72 л.с. в случае систем охлаждение/нагрев.

#### Функция экстренной работы

При выходе из строя одного модуля холодильной станции можно активировать режим, позволяющий продолжить работу исправным модулям.




#### Переменная температура кипения


Логика управления, разработанная для систем Set Free, позволяет им быть энергоэффективными и способными поддерживать высокий уровень комфорта. Установите высокую температуру кипения, учитывая теплопритоки здания, и air365Max Pro станет еще более экономичной в использовании. Выберите низкую целевую температуру кипения в соответствии с теплопритоками, и air365Max Pro быстрее достигнет целевых параметров в режиме охлаждения. Дополнительно Вы можете ограничить минимальную температуру воздуха, выходящего из внутреннего блока в режиме охлаждения. Это возможно благодаря применению датчика температуры выходящего воздуха и функции «GENTLE COOL», активация которой доступна с проводного пульта управления.

#### Усиленная антикоррозионная защита

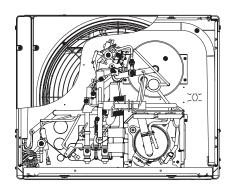
Благодаря трехслойному покрытию ребер теплообменника, air365Max Pro имеет лучшую защиту для установки в агрессивных средах.

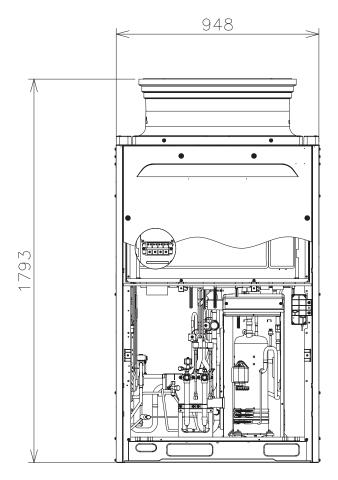


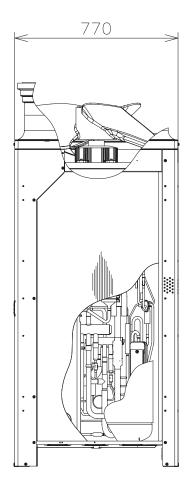
#### Наружные блоки



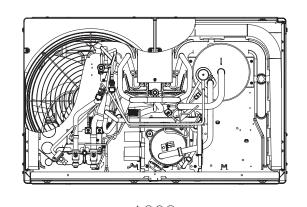
MM<sup>2</sup>

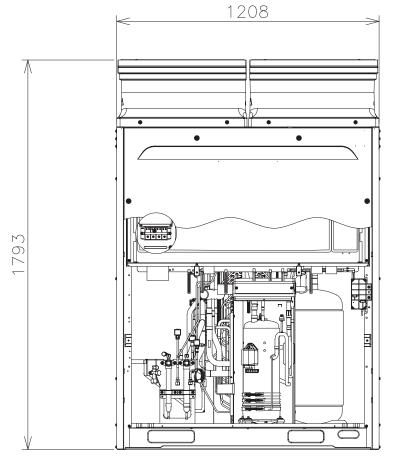

Межблочный кабель

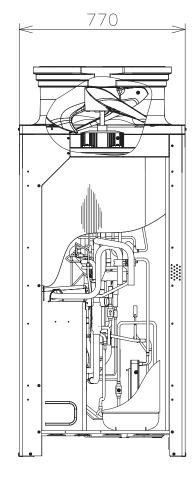

|                                                                       |                 | Хладагент R410A           |                                         |                                         |                                        |                                        |                                        |                                          |                                        |  |  |
|-----------------------------------------------------------------------|-----------------|---------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|--|--|
|                                                                       |                 | RAS-5FSXNP2E              | RAS-6FSXNP2E                            | RAS-8FSXNP2E                            | RAS-10FSXNP2E                          | RAS-12FSXNP2E                          | RAS-14FSXNP2E                          | RAS-16FSXNP2E                            | RAS-18FSXNP2                           |  |  |
| Производительность, охлажд                                            | ение            |                           |                                         |                                         |                                        |                                        |                                        |                                          |                                        |  |  |
| Производительность                                                    | кВт             | 14,00                     | 16,00                                   | 22,40                                   | 28,00                                  | 33,50                                  | 40,00                                  | 45,00                                    | 50,00                                  |  |  |
| Потребляемая мощность                                                 | кВт             | 2,90                      | 3,37                                    | 5,05                                    | 6,18                                   | 8,44                                   | 11,53                                  | 11,51                                    | 12,79                                  |  |  |
| Коэффициент<br>энергоэффективности EER                                |                 | 4,20                      | 3,78                                    | 4,02                                    | 3,68                                   | 3,39                                   | 2,64                                   | 3,47                                     | 3,11                                   |  |  |
| Коэффициент сезонной<br>энергоэффективности SEE                       | R               | 7,75                      | 7,62                                    | 8,38                                    | 7,80                                   | 7,41                                   | 7,41                                   | 7,45                                     | 7,09                                   |  |  |
| Гарантированный диапа-<br>зон рабочих температур<br>наружного воздуха | °C (CT)         |                           |                                         |                                         | -10.                                   | +52                                    |                                        |                                          |                                        |  |  |
| Производительность, нагрев                                            |                 |                           |                                         |                                         |                                        |                                        |                                        |                                          |                                        |  |  |
| Производительность                                                    | кВт             | 16,00                     | 18,00                                   | 25,00                                   | 31,50                                  | 37,50                                  | 45,00                                  | 50,00                                    | 56,00                                  |  |  |
| Потребляемая мощность                                                 | кВт             | 2,80                      | 3,52                                    | 5,08                                    | 6,65                                   | 8,01                                   | 10,84                                  | 12,92                                    | 14,97                                  |  |  |
| Коэффициент<br>энергоэффективности СОР                                |                 | 5,29                      | 4,69                                    | 4,94                                    | 4,66                                   | 4,46                                   | 4,15                                   | 4,17                                     | 3,76                                   |  |  |
| Коэффициент сезонной<br>энергоэффективности SCO                       | Р               | 5,04                      | 4,44                                    | 5,19                                    | 4,92                                   | 4,93                                   | 1,69                                   | 5,03                                     | 4,66                                   |  |  |
| Гарантированный диапа-<br>зон рабочих температур<br>наружного воздуха | °C (MT)         |                           |                                         |                                         | -25.                                   | +15                                    |                                        |                                          |                                        |  |  |
| Наружный блок                                                         |                 |                           |                                         |                                         |                                        |                                        |                                        |                                          |                                        |  |  |
| Уровень звукового<br>давления                                         | дБ(А)           | 52                        | 57                                      | 57                                      | 60                                     | 59                                     | 60                                     | 63                                       | 65                                     |  |  |
| Уровень<br>звуковой мощности                                          | дБ(А)           | 72                        | 78                                      | 76                                      | 81                                     | 79                                     | 81                                     | 83                                       | 85                                     |  |  |
| Расход воздуха<br>(охлаждение)                                        | м³/мин          | 154                       | 175                                     | 185                                     | 219                                    | 219                                    | 256                                    | 346                                      | 362                                    |  |  |
| Габаритные размеры (В<br>× Д × Г)                                     | ММ              | 1793 x 9                  | 48 x 770                                |                                         | 1793 x 1                               | 1793 x 1                               | 598 x 770                              |                                          |                                        |  |  |
| Упаковка размеры (В ×<br>Д × Г)                                       | ММ              | 1945 x 1                  | 024 x 840                               |                                         | 1945 x 1                               | 284 x 840                              |                                        | 1945 x 1674 x 840                        |                                        |  |  |
| Объем в упаковке                                                      | ММ              | 1                         | ,7                                      |                                         | 21                                     | 1,1                                    |                                        | 2,7                                      |                                        |  |  |
| Вес (нетто/брутто)                                                    | КГ              | 197/203                   | 197/203                                 | 262/275                                 | 262/275                                | 267/277                                | 267/277                                | 360/373                                  | 360/373                                |  |  |
| Макс количество подключа                                              | емых ВБ         | 16                        | 19                                      | 26                                      | 32                                     | 39                                     | 45                                     | 52                                       | 58                                     |  |  |
| Загрузка НБ (мин–макс)                                                | %               |                           |                                         |                                         | 50-                                    | -150                                   |                                        |                                          |                                        |  |  |
| Компрессор: тип / количес                                             | гво             |                           |                                         | Герме                                   | тичный спирал                          | ьный с впрыско                         | м пара                                 |                                          |                                        |  |  |
| Компрессор: количество                                                |                 | 1                         | 1                                       | 1                                       | 1                                      | 1                                      | 1                                      | 2                                        | 2                                      |  |  |
| Параметры трубопровода                                                |                 |                           |                                         |                                         |                                        |                                        |                                        |                                          |                                        |  |  |
| Двухтрубная система:                                                  |                 |                           |                                         |                                         |                                        |                                        |                                        |                                          |                                        |  |  |
| жидкость                                                              | мм              | Ø 9,52 (³/ <sub>8</sub> ) | Ø 9,52 (³/ <sub>8</sub> )               | Ø 9,52 (³/ <sub>8</sub> )               | Ø 9,52 (³/ <sub>8</sub> )              | Ø 12,7 (¹/₂)                           | Ø 12,7 (¹/₂)                           | Ø 12,7 (¹/₂)                             | Ø 15,88 (5/8                           |  |  |
| газ                                                                   | (дюйм)          | Ø 15,88 (5/8)             | Ø 19,05 ( <sup>3</sup> / <sub>4</sub> ) | Ø 19,05 ( <sup>3</sup> / <sub>4</sub> ) | Ø 22,2 ( <sup>7</sup> / <sub>8</sub> ) | Ø 25,4 (1)                             | Ø 25,4 (1)                             | Ø 28,58 (1 <sup>1</sup> / <sub>8</sub> ) | Ø 28,58 (1 1/                          |  |  |
| Трехтрубная система:                                                  |                 | ,                         | ,                                       |                                         |                                        |                                        |                                        |                                          | ,                                      |  |  |
| жидкость                                                              |                 | Ø 9,52 (³/ <sub>8</sub> ) | Ø 9,52 (³/ <sub>8</sub> )               | Ø 9,52 (³/ <sub>8</sub> )               | Ø 9,52 (³/ <sub>8</sub> )              | Ø 12,7 (¹/₂)                           | Ø 12,7 (¹/₂)                           | Ø 12,7 (¹/₂)                             | Ø 15,88 (5/                            |  |  |
| газ (низкого давления)                                                | мм              | Ø 15,88 (5/8)             | Ø 19,05 (3/4)                           | Ø 19,05 (3/4)                           | Ø 22,2 (7/8)                           | Ø 25,4 (1)                             | Ø 25,4 (1)                             | Ø 28,58 (1 ½)                            | Ø 28,58 (1 <sup>1</sup> )              |  |  |
| газ (высокого давления)                                               | (дюйм)          | Ø 12,7 (1/2)              | Ø 15,88 (5/8)                           | Ø 15,88 (5/8)                           | Ø 19,05 (3/4)                          | Ø 22,2 ( <sup>7</sup> / <sub>8</sub> ) | Ø 22,2 ( <sup>7</sup> / <sub>8</sub> ) | Ø 22,2 ( <sup>7</sup> / <sub>8</sub> )   | Ø 22,2 ( <sup>7</sup> / <sub>8</sub> ) |  |  |
| Заводская заправка                                                    |                 | 5,7                       | 6,0                                     | 9,1                                     | 9,1                                    | 9,3                                    | 9,3                                    | 10,6                                     | 11,1                                   |  |  |
| Хладагент                                                             |                 | ٥,١                       | 0,0                                     | 5,1                                     |                                        | 9,5<br>10A                             | 5,5                                    | 10,0                                     | 11,1                                   |  |  |
| Электрические параметры                                               |                 |                           |                                         |                                         | N4                                     | 10/1                                   |                                        |                                          |                                        |  |  |
| Электрические параметры                                               | В/ф/Гц          |                           |                                         |                                         | 400                                    | /3/50                                  |                                        |                                          |                                        |  |  |
| •                                                                     |                 | Q C                       | 11.2                                    | 1/1 5                                   |                                        | 22,4                                   | 29.0                                   | 30.6                                     | 35,0                                   |  |  |
| Макс. потр. ток                                                       | A               | 8,6                       | 11,2                                    | 14,5                                    | 19,5                                   |                                        | 28,0                                   | 30,6                                     |                                        |  |  |
| Кабель электропитания                                                 | MM <sup>2</sup> | 5×                        | 2,5                                     | 5×4,0                                   |                                        | 5×6,0                                  |                                        | 5×.                                      | 10,0                                   |  |  |


2×0,75




# RAS-5FSXNP2E, RAS-6FSXNP2E

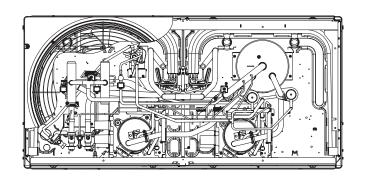


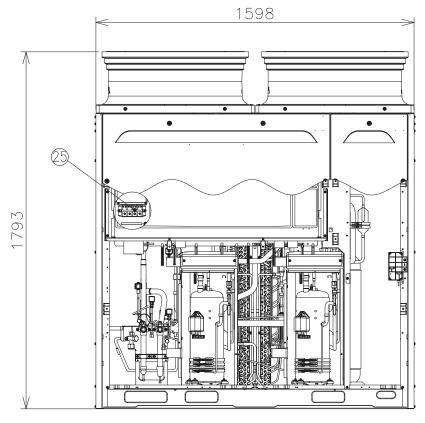



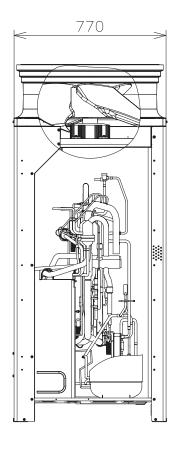



## RAS-8FSXNP2E, RAS-10FSXNP2E, RAS-12FSXNP2E, RAS-14FSXNP2E







91

Полупромышленные и мультизональные системы кондиционирования

# RAS-16FSXNP2E, RAS-18FSXNP2E







# Высокоэффективная серия air365Max Pro

|                                                                      |             |                                      |                                        |                                | Хладагент R410A                |                                |                                  |                              |
|----------------------------------------------------------------------|-------------|--------------------------------------|----------------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------------|------------------------------|
|                                                                      |             | RAS-20FSXNP2E                        | RAS-22FSXNP2E                          | RAS-24FSXNP2E                  | RAS-26FSXNP2E                  | RAS-28FSXNP2E                  | RAS-30FSXNP2E                    | RAS-32FSXNP2I                |
| Комбинация модулей                                                   | í           | RAS-10FSXNP2E<br>RAS-10FSXNP2E       | RAS-10FSXNP2E<br>RAS-12FSXNP2E         | RAS-12FSXNP2E<br>RAS-12FSXNP2E | RAS-10FSXNP2E<br>RAS-16FSXNP2E | RAS-12FSXNP2E<br>RAS-16FSXNP2E | RAS-12FSXNP2E<br>RAS-18FSXNP2E   | RAS-14FSXNP2<br>RAS-18FSXNP2 |
| Рефнеты                                                              |             |                                      |                                        |                                |                                |                                |                                  |                              |
| Двухтрубная система                                                  | 9           | MC-20AN1                             | MC-20AN1                               | MC-20AN1                       | MC-21AN1                       | MC-21AN1                       | MC-21AN1                         | MC-21AN1                     |
| Трехтрубная система                                                  | ì           | MC-20XN1                             | MC-20XN1                               | MC-20XN1                       | MC-21XN1                       | MC-21XN1                       | MC-21XN1                         | MC-21XN1                     |
| Іроизводительность, охлажден                                         | не          |                                      |                                        |                                |                                |                                |                                  |                              |
| Троизводительность                                                   | кВт         | 56,00                                | 61,50                                  | 67,00                          | 73,00                          | 77,50                          | 85,00                            | 90,00                        |
| Іотребляемая мощность                                                | кВт         | 12,36                                | 14,62                                  | 16,88                          | 17,69                          | 19,69                          | 21,61                            | 24,32                        |
| Коэффициент<br>энергоэффективности EER                               |             | 3,68                                 | 3,51                                   | 3,39                           | 3,54                           | 3,43                           | 3,22                             | 2,88                         |
| Соэффициент сезонной<br>энергоэффективности SEER                     |             | 7,44                                 | 7,30                                   | 7,19                           | 7,45                           | 7,33                           | 7,11                             | 7,15                         |
| арантированный<br>циапазон рабочих<br>емператур наружного<br>воздуха | °C (CT)     |                                      | ,                                      |                                | -10+52                         |                                |                                  |                              |
| Іроизводительность, нагрев                                           |             |                                      |                                        |                                |                                |                                |                                  |                              |
| Троизводительность                                                   | кВт         | 63,00                                | 69,00                                  | 77,50                          | 82,50                          | 90,00                          | 95,00                            | 100,00                       |
| Іотребляемая мощность                                                | кВт         | 13,29                                | 14,66                                  | 16,56                          | 19,81                          | 21,53                          | 23,35                            | 25,56                        |
| Соэффициент<br>нергоэффективности СОР                                |             | 4,66                                 | 4,55                                   | 4,46                           | 4,33                           | 4,28                           | 4,02                             | 4,63                         |
| Соэффициент сезонной<br>нергоэффективности SCOP                      |             | 4,71                                 | 4,79                                   | 4,87                           | 4,85                           | 4,91                           | 4,63                             | 4,53                         |
| арантированный<br>циапазон рабочих<br>емператур наружного<br>воздуха | °C (MT)     |                                      |                                        |                                | -25+15                         |                                |                                  |                              |
| Наружный блок                                                        |             |                                      |                                        |                                |                                |                                |                                  |                              |
| ровень звуковой<br>иощности                                          | дБ(А)       | 83                                   | 82                                     | 81                             | 84                             | 83                             | 84                               | 85                           |
| /ровень звукового<br>давления                                        | дБ(А)       | 62                                   | 62                                     | 61                             | 64                             | 63                             | 64                               | 65                           |
| Расход воздуха<br>охлаждение)                                        | м³/мин      | 219 + 219                            | 219 + 219                              | 219 + 219                      | 346 + 219                      | 346 + 219                      | 362 + 219                        | 362 + 256                    |
| ¯абаритные размеры<br>В×Д×Г)                                         | мм          |                                      | 1793 x 2436 x 770                      |                                |                                | 1793 x 28                      | 326 x 770                        |                              |
| Вес (нетто)                                                          | КГ          | 262 + 262                            | 267 + 262                              | 267 + 267                      | 360 + 262                      | 360 + 262                      | 360 + 262                        | 360 + 262                    |
| Вес (брутто)                                                         | КГ          | 275 + 275                            | 277 + 275                              | 275 + 275                      | 373 + 275                      | 373 + 277                      | 373 + 277                        | 373 + 277                    |
| Вагрузка НБ (мин–макс)                                               | %           |                                      |                                        |                                | 50-150                         |                                |                                  |                              |
| Сомпрессор: Тип / количеств                                          | ю           |                                      | Спиральный/2                           |                                | Спирал                         | ьный/3                         | Спирал                           | іьный/4                      |
| Іараметры трубопровода                                               |             |                                      |                                        |                                |                                |                                |                                  |                              |
| Івухтрубная система                                                  |             |                                      |                                        |                                |                                |                                |                                  |                              |
| кидкость                                                             | мм          |                                      | 15,88 (5/8)                            |                                |                                | 19,05                          | 5 (3/4)                          |                              |
| аз                                                                   | (дюйм)      |                                      | 28,58 (1 <sup>1</sup> / <sub>8</sub> ) |                                |                                | 31,75                          | (1 <sup>1</sup> / <sub>4</sub> ) |                              |
| рехтрубная система:                                                  |             |                                      |                                        |                                |                                |                                |                                  |                              |
| кидкость                                                             |             |                                      | 15,88 ( <sup>5</sup> / <sub>8</sub> )  |                                |                                | 19,05                          | 5 (3/4)                          |                              |
| аз (низкого давления)                                                | мм          |                                      | 28,58 (1 <sup>1</sup> / <sub>8</sub> ) |                                |                                | 31,75                          |                                  |                              |
| аз (высокого давления)                                               | (дюйм)      | 22,2 ( <sup>7</sup> / <sub>8</sub> ) |                                        | 25,4 (1)                       |                                | , -                            | 28,58 (1 ½)                      |                              |
| аправка                                                              | КГ          | 18,2                                 | 18,4                                   | 18,6                           | 19,7                           | 19,9                           | 20,4                             | 20,4                         |
|                                                                      |             | 20,2                                 | 20, .                                  | 20,0                           | R410A                          | 10,0                           | 20, .                            | 20,1                         |
| палагент                                                             |             |                                      |                                        |                                | MATON                          |                                |                                  |                              |
| • •                                                                  |             |                                      |                                        |                                |                                |                                |                                  |                              |
| лектрические параметры                                               | В/ф/ги      |                                      |                                        |                                | 400/3/50                       |                                |                                  |                              |
| ладагент  лектрические параметры  лектропитание  Макс. потр. ток     | В/ф/Гц<br>А | 39,0                                 | 41,9                                   | 44,8                           | 400/3/50<br>50,1               | 53,0                           | 57,4                             | 63,0                         |



# Высокоэффективная серия air365Max Pro

|                                                                      |                 |                                        | ı                              |                                                 | нт R410A                                                                   |                                                 |                                                 |
|----------------------------------------------------------------------|-----------------|----------------------------------------|--------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
|                                                                      |                 | RAS-34FSXNP2E                          | RAS-36FSXNP2E                  | RAS-38FSXNP2E                                   | RAS-40FSXNP2E                                                              | RAS-42FSXNP2E                                   | RAS-44FSXNP2E                                   |
| Комбинация модулей                                                   |                 | RAS-16FSXNP2E<br>RAS-18FSXNP2E         | RAS-18FSXNP2E<br>RAS-18FSXNP2E | RAS-12FSXNP2E<br>RAS-12FSXNP2E<br>RAS-14FSXNP2E | RAS-12FSXNP2E<br>RAS-14FSXNP2E<br>RAS-14FSXNP2E                            | RAS-14FSXNP2E<br>RAS-14FSXNP2E<br>RAS-14FSXNP2E | RAS-12FSXNP2I<br>RAS-14FSXNP2I<br>RAS-18FSXNP2I |
| Рефнеты                                                              |                 |                                        |                                |                                                 |                                                                            |                                                 |                                                 |
| Двухтрубная система                                                  | a               | MC-21AN1                               | MC-21AN1                       | MC-30AN1                                        | MC-30AN1                                                                   | MC-30AN1                                        | MC-30AN1                                        |
| Трехтрубная система                                                  | 3               | MC-21XN1                               | MC-21XN1                       | MC-30XN1                                        | MC-30XN1                                                                   | MC-30XN1                                        | MC-31XN1                                        |
| <b>Троизводительность, охлажде</b>                                   | ние             |                                        |                                |                                                 | 1                                                                          | 1                                               |                                                 |
| Производительность                                                   | кВт             | 95,00                                  | 100,00                         | 106,00                                          | 112,00                                                                     | 118,00                                          | 122,00                                          |
| Тотребляемая мощность                                                | кВт             | 24,30                                  | 25,58                          | 28,14                                           | 31,08                                                                      | 34,01                                           | 32,36                                           |
| Коэффициент<br>энергоэффективности EER                               |                 | 3,27                                   | 3,11                           | 3,07                                            | 2,83                                                                       | 2,64                                            | 3,01                                            |
| Коэффициент сезонной<br>энергоэффективности SEER                     |                 | 7,25                                   | 7,09                           | 7,19                                            | 7,21                                                                       | 7,24                                            | 7,15                                            |
| арантированный диа-<br>пазон рабочих температур<br>наружного воздуха | °C (CT)         |                                        |                                | -10.                                            | +52                                                                        |                                                 |                                                 |
| Производительность, нагрев                                           |                 |                                        |                                |                                                 |                                                                            |                                                 |                                                 |
| Производительность                                                   | кВт             | 106,00                                 | 112,00                         | 118,00                                          | 125,00                                                                     | 132,00                                          | 140,00                                          |
| Потребляемая мощность                                                | кВт             | 27,89                                  | 29,95                          | 26,42                                           | 29,12                                                                      | 31,81                                           | 34,20                                           |
| Коэффициент<br>энергоэффективности СОР                               |                 | 3,94                                   | 3,76                           | 4,13                                            | 3,88                                                                       | 3,68                                            | 3,90                                            |
| Коэффициент сезонной<br>энергоэффективности SCOP                     |                 | 4,70                                   | 4,50                           | 4,76                                            | 4,66                                                                       | 4,58                                            | 4,61                                            |
| арантированный диа-<br>пазон рабочих температур<br>наружного воздуха | °C (MT)         |                                        |                                | -20.                                            | +15                                                                        |                                                 |                                                 |
| Наружный блок                                                        |                 |                                        |                                |                                                 |                                                                            |                                                 |                                                 |
| /ровень звуковой<br>иощности                                         | дБ(А)           | 86                                     | 87                             | 83                                              | 83                                                                         | 84                                              | 85                                              |
| Уровень звукового<br>цавления                                        | дБ(А)           | 66                                     | 67                             | 62                                              | 63                                                                         | 63                                              | 64                                              |
| Расход воздуха<br>охлаждение)                                        | м³/мин          | 362 + 346                              | 362 + 362                      | 256 + 219 + 219                                 | 256 + 256 + 219                                                            | 256 + 256 + 256                                 | 362 + 256+ 219                                  |
| Габаритные размеры<br>(В × Д × Г)                                    | ММ              | 1793 x 32                              | 216 x 7700                     |                                                 | 1793 x 3664 x 7700                                                         |                                                 | 1793 x 4054 x 77                                |
| Зес (нетто)                                                          | КГ              | 360 + 360                              | 360 + 360                      | 267 + 267 + 267                                 | 267 + 267 + 267                                                            | 267 + 267 + 267                                 | 360 + 267 + 267                                 |
| Вес (брутто)                                                         | КГ              | 373 + 373                              | 373 + 373                      | 277 + 277 + 277                                 | 277 + 277 + 277                                                            | 277 + 277 + 277                                 | 373 + 277 + 277                                 |
| Макс. кол-во подключаемых                                            | ВБ              |                                        |                                | 6                                               | 54                                                                         |                                                 |                                                 |
| Загрузка НБ (мин–макс)                                               | %               |                                        |                                | 50-                                             | -150                                                                       |                                                 |                                                 |
| Компрессор: Тип / количеств                                          | 80              |                                        | Спиральный/4                   |                                                 | Спиральный/5                                                               | Спиральный/6                                    | Спиральный/                                     |
| <b>Тараметры трубопровода:</b>                                       |                 |                                        |                                |                                                 |                                                                            |                                                 |                                                 |
| Цвухтрубная система                                                  |                 |                                        |                                |                                                 |                                                                            |                                                 |                                                 |
| кидкость<br>газ                                                      | мм<br>(дюйм)    | 31,75 (1 <sup>1</sup> / <sub>4</sub> ) |                                | 19,0                                            | 5 ( <sup>3</sup> / <sub>4</sub> )<br>38,1 (1 <sup>1</sup> / <sub>2</sub> ) |                                                 |                                                 |
| Грехтрубная система                                                  |                 |                                        |                                |                                                 |                                                                            |                                                 |                                                 |
| кидкость                                                             |                 |                                        |                                | 19,0                                            | 5 (³/₄)                                                                    |                                                 |                                                 |
| газ (низкого давления)                                               | MM<br>(TIOĞILI) |                                        |                                |                                                 | 5 (1 ¹/4)                                                                  |                                                 |                                                 |
| газ (высокого давления)                                              | (дюйм)          | 28,58                                  | (1 ¹/ <sub>8</sub> )           |                                                 |                                                                            | (11/4)                                          |                                                 |
| Заводская заправка                                                   | КГ              | 21,7                                   | 22,2                           | 27,9                                            | 27,9                                                                       | 27,9                                            | 29,7                                            |
| Кладагент (падагент)                                                 |                 | ,-                                     | ,_                             |                                                 | 10A                                                                        | ,-                                              | -2,                                             |
| Электрические параметры                                              |                 |                                        |                                | 114                                             |                                                                            |                                                 |                                                 |
| Электропитание                                                       | В/ф/Гц          |                                        |                                | 400                                             | /3/50                                                                      |                                                 |                                                 |
| Макс. потр. ток                                                      | Α               | 65,6                                   | 70,0                           | 72,8                                            | 78,4                                                                       | 84,0                                            | 85,4                                            |
| Межблочный кабель                                                    | MM <sup>2</sup> | ,0                                     | . 3,0                          |                                                 | 0,75                                                                       | ,0                                              |                                                 |

# Высокоэффективная серия air365Max Pro

|                                                                       |                 |                                                 |                                                 | Хладагент R410A                                 |                                                 |                                              |  |
|-----------------------------------------------------------------------|-----------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------|--|
|                                                                       |                 | RAS-46FSXNP2E                                   | RAS-48FSXNP2E                                   | RAS-50FSXNP2E                                   | RAS-52FSXNP2E                                   | RAS-54FSXNP2E                                |  |
| Комбинация модулей                                                    | í               | RAS-14FSXNP2E<br>RAS-14FSXNP2E<br>RAS-18FSXNP2E | RAS-12FSXNP2E<br>RAS-18FSXNP2E<br>RAS-18FSXNP2E | RAS-14FSXNP2E<br>RAS-18FSXNP2E<br>RAS-18FSXNP2E | RAS-16FSXNP2E<br>RAS-18FSXNP2E<br>RAS-18FSXNP2E | RAS-18FSXNP2<br>RAS-18FSXNP2<br>RAS-18FSXNP2 |  |
| Рефнеты                                                               |                 |                                                 |                                                 |                                                 |                                                 |                                              |  |
| Двухтрубная система                                                   | 9               | MC-30AN1                                        | MC-30AN1                                        | MC-30AN1                                        | MC-30AN1                                        | MC-30AN1                                     |  |
| Трехтрубная система                                                   | n               | MC-30XN1                                        | MC-30XN1                                        | MC-30XN1                                        | MC-30XN1                                        | MC-30XN1                                     |  |
| Производительность, охлажден                                          | не              |                                                 |                                                 |                                                 |                                                 |                                              |  |
| Производительность                                                    | кВт             | 128,00                                          | 136,00                                          | 140,00                                          | 145,00                                          | 150,00                                       |  |
| Потребляемая мощность                                                 | кВт             | 35,29                                           | 34,65                                           | 37,10                                           | 37,08                                           | 38,36                                        |  |
| Коэффициент<br>энергоэффективности EER                                |                 | 2,81                                            | 3,05                                            | 2,96                                            | 3,21                                            | 3,11                                         |  |
| Коэффициент сезонной<br>энергоэффективности SEER                      |                 | 7,18                                            | 7,25                                            | 7,13                                            | 7,20                                            | 7,09                                         |  |
| Гарантированный диа-<br>пазон рабочих температур<br>наружного воздуха | °C (CT)         |                                                 |                                                 | -10+52                                          |                                                 |                                              |  |
| Производительность, нагрев                                            |                 |                                                 |                                                 |                                                 |                                                 |                                              |  |
| Производительность                                                    | кВт             | 145,00                                          | 150,00                                          | 155,00                                          | 160,00                                          | 165,00                                       |  |
| Потребляемая мощность                                                 | кВт             | 36,41                                           | 38,09                                           | 40,27                                           | 42,34                                           | 44,12                                        |  |
| Коэффициент<br>энергоэффективности СОР                                |                 | 3,71                                            | 3,86                                            | 3,74                                            | 3,87                                            | 3,76                                         |  |
| Коэффициент сезонной<br>энергоэффективности SCOP                      |                 | 4,54                                            | 4,66                                            | 4,51                                            | 4,62                                            | 4,50                                         |  |
| Гарантированный диа-<br>пазон рабочих температур<br>наружного воздуха | °C (MT)         |                                                 |                                                 | -20+15                                          |                                                 |                                              |  |
| Наружный блок                                                         |                 |                                                 |                                                 |                                                 |                                                 |                                              |  |
| Уровень звуковой<br>мощности                                          | дБ(А)           | 85                                              | 86                                              | 87                                              | 87                                              | 88                                           |  |
| Уровень звукового<br>давления                                         | дБ(А)           | 65                                              | 66                                              | 66                                              | 67                                              | 68                                           |  |
| Расход воздуха<br>(охлаждение)                                        | м³/мин          | 362 + 256 + 256                                 | 362 + 346 + 256                                 | 362 + 362 + 256                                 | 362 + 362 + 346                                 | 362 + 362 + 362                              |  |
| Габаритные размеры (В<br>× Д × Г)                                     | мм              | 1793 x 4054 x 770                               | 1793 x 4                                        | 444 x 770                                       | 1793 × 4834 × 770                               |                                              |  |
| Вес (нетто)                                                           | КГ              | 360 + 267 + 267                                 | 360 + 360 + 267                                 | 360 + 360 + 267                                 | 360 + 360 + 360                                 | 360 + 360 + 360                              |  |
| Вес (брутто)                                                          | КГ              | 373 + 277 + 277                                 | 373 + 277 + 277                                 | 373 + 373 + 277                                 | 373 + 373 + 373                                 | 373 + 373 + 373                              |  |
| Макс. кол-во подключаемых                                             | ВБ              |                                                 |                                                 | 64                                              |                                                 |                                              |  |
| Загрузка НБ (мин–макс)                                                | %               |                                                 |                                                 | 50-150                                          |                                                 |                                              |  |
| Компрессор: тип / количеств                                           | 10              | Спиральный/6                                    | Спиральный/5                                    |                                                 | Спиральный/6                                    |                                              |  |
| Параметры трубопровода                                                |                 |                                                 |                                                 |                                                 |                                                 |                                              |  |
| Двухтрубная система                                                   |                 |                                                 |                                                 |                                                 |                                                 |                                              |  |
| жидкость                                                              | ММ              |                                                 |                                                 | 19,05 (3/4)                                     |                                                 |                                              |  |
| газ                                                                   | (дюйм)          |                                                 |                                                 | 38,1 (1 1/2)                                    |                                                 |                                              |  |
| Трехтрубная система:                                                  |                 |                                                 |                                                 |                                                 |                                                 |                                              |  |
| жидкость                                                              |                 |                                                 |                                                 | 19,05 (3/4)                                     |                                                 |                                              |  |
| газ (низкого давления)                                                | мм<br>(дюйм)    |                                                 |                                                 | 38,1 (1 1/2)                                    |                                                 |                                              |  |
| газ (высокого давления)                                               | W/              |                                                 |                                                 | 31,75 (1 1/4)                                   |                                                 |                                              |  |
| Заводская заправка                                                    | КГ              | 29,7                                            | 31,0                                            | 31,5                                            | 32,8                                            | 33,3                                         |  |
| Хладагент                                                             |                 |                                                 |                                                 | R410A                                           |                                                 |                                              |  |
| Электрические параметры                                               |                 |                                                 |                                                 |                                                 |                                                 |                                              |  |
| Электропитание                                                        | В/ф/Гц          |                                                 |                                                 | 400/3/50                                        |                                                 |                                              |  |
| Макс. потр. ток                                                       | А               | 91,0                                            | 93,6                                            | 98,0                                            | 100,6                                           | 105,0                                        |  |
| Межблочный кабель                                                     | MM <sup>2</sup> |                                                 |                                                 | 2×0,75                                          |                                                 |                                              |  |















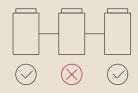




#### Универсальные наружные блоки

Наружные блоки могут применяться как в составе двухтрубных, так и в составе трехтрубных схем.

#### Высокая энергоэффективность

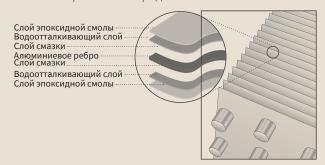

Благодаря своим сезонным показателям энергоэффективности (SEER 8.33 и SCOPE 5.06) высокоэффективная линейка air365Max превосходит требования ERP 2021.

#### Широкая диапазон производительностей

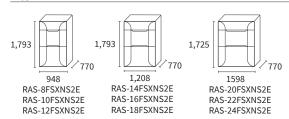
Компактная и легкая линейка наружных блоков air365Max представлена модулями производительностью от 8 до 24 л.с., которые могут объединяться в холодильные станции производительностью до 54 л.с. в случае систем с рекуперацией тепла и производительностью до 96 л.с. в случае систем охлаждение/нагрев.

#### Функция экстренной работы

При выходе из строя одного модуля холодильной станции можно активировать режим, позволяющий продолжить работу исправным модулям.




#### Переменная температура кипения

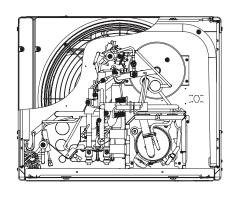

Логика управления, разработанная для систем air365Max, позволяет им быть энергоэффективными и способными поддерживать высокий уровень комфорта. Установите высокую температуру кипения, учитывая теплопритоки здания, и air365Max станет еще более экономичной в использовании. Выберите низкую целевую температуру кипения в соответствии с теплопритоками, и air365Max быстрее достигнет целевых параметров в режиме охлаждения. Дополнительно Вы можете ограничить минимальную температуру воздуха, выходящего из внутреннего блока в режиме охлаждения. Это возможно благодаря применению датчика температуры выходящего воздуха и функции «GENTLE COOL», активация которой доступна с проводного пульта управления.

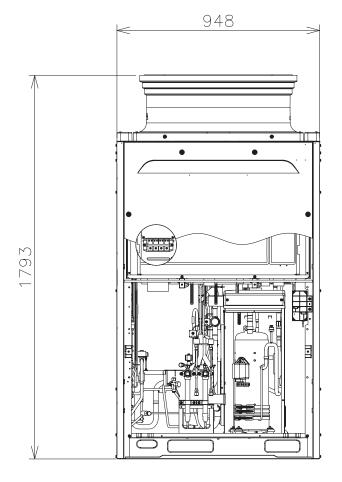
#### Усиленная антикоррозионная защита

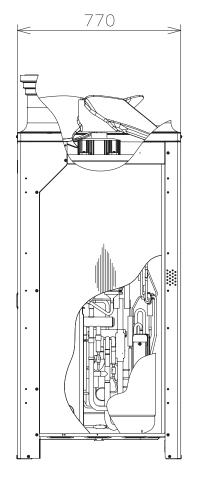
Благодаря трехслойному покрытию ребер теплообменника, air365Max имеет лучшую защиту для установки в агрессивных средах.



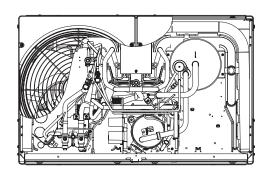
#### Наружные блоки

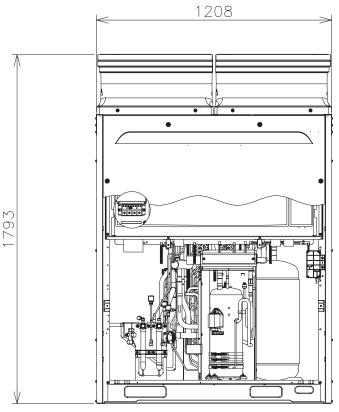


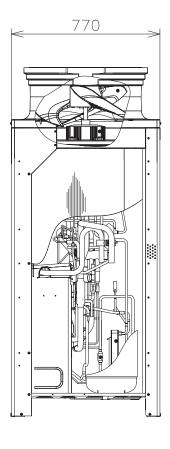


|                                                                    |                 |                  | Хладаге             | нт R410A             |                   |  |
|--------------------------------------------------------------------|-----------------|------------------|---------------------|----------------------|-------------------|--|
|                                                                    |                 | RAS-8FSXNS2E     | RAS-10FSXNS2E       | RAS-12FSXNS2E        | RAS-14FSXNS2E     |  |
| Производительность, охлаждение                                     |                 |                  |                     |                      |                   |  |
| Производительность                                                 | кВт             | 22,4             | 28,0                | 33,5                 | 40,0              |  |
| Потребляемая мощность                                              | кВт             | 6,28             | 8,20                | 10,43                | 13,95             |  |
| Коэффициент энергоэффективност                                     | и EER           | 3,57             | 3,41                | 3,21                 | 2,52              |  |
| Коэффициент сезонной<br>энергоэффективности SEER                   |                 | 7,35             | 7,12                | 6,79                 | 6,91              |  |
| Гарантированный диапазон рабо-<br>них температур наружного воздуха | C (CT)          |                  | -10.                | +52                  |                   |  |
| Производительность, нагрев                                         |                 |                  |                     |                      |                   |  |
| Производительность                                                 | кВт             | 25,0             | 31,5                | 37,5                 | 45,0              |  |
| Потребляемая мощность                                              | кВт             | 5,41             | 7,26                | 10,56                | 11,45             |  |
| Коэффициент энергоэффективност                                     | и СОР           | 4,62             | 4,34                | 3,34                 | 3,86              |  |
| Коэффициент сезонной<br>энергоэффективности SCOP                   |                 | 4,63             | 4,56                | 4,29                 | 4,51              |  |
| Гарантированный диапазон рабочих температур наружного воздуха      | °C (MT)         | -25+15           |                     |                      |                   |  |
| Наружный блок                                                      |                 |                  |                     |                      |                   |  |
| Уровень звуковой мощности                                          | дБ(А)           | 77               | 79                  | 82                   | 81                |  |
| Уровень звукового давления                                         | дБ(А)           | 57               | 59                  | 61                   | 60                |  |
| Расход воздуха (охлаждение)                                        | м³/мин          | 175              | 175                 | 198                  | 239               |  |
| Габаритные размеры (В × Д × Г)                                     | ММ              | 1793 × 948 × 770 | 1793 × 948 × 770    | 1793 × 948 × 770     | 1793 × 1208 × 770 |  |
| Вес (нетто/брутто)                                                 | КГ              | 197/210          | 197/210             | 262/275              | 262/275           |  |
| Макс. кол-во подключаемых ВБ                                       |                 | 26               | 32                  | 39                   | 45                |  |
| Загрузка НБ (мин–макс)                                             | %               |                  | 50-                 | 200                  |                   |  |
| Компрессор: Тип                                                    |                 |                  | Герметичный спираль | ьный с впрыском пара |                   |  |
| Компрессор: Количество                                             |                 | 1                | 1                   | 1                    | 1                 |  |
| Тараметры трубопровода:                                            |                 |                  |                     |                      |                   |  |
| Двухтрубная система:                                               |                 |                  |                     |                      |                   |  |
| жидкость                                                           | ММ              | Ø 9,52 (%)       | Ø 9,52 (%)          | Ø 12,7 (½)           | Ø 12,7 (½)        |  |
| газ                                                                | (дюйм)          | Ø 19,05 (¾)      | Ø 22,2 (7/8)        | Ø 25,4 (1)           | Ø 25,4 (1)        |  |
| Трехтрубная система                                                |                 |                  |                     |                      |                   |  |
| жидкость                                                           |                 | Ø 19,05 (¾)      | Ø 22,2 (7/8)        | Ø 25,4 (1)           | Ø 25,4 (1)        |  |
| газ (низкого давления)                                             | мм<br>(дюйм)    | Ø 15,88 (%)      | Ø 19,05 (¾)         | Ø 22,2 (7/8)         | Ø 22,2 (%)        |  |
| газ (высокого давления)                                            | (дюим)          | Ø 9,52 (%)       | Ø 9,52 (¾)          | Ø 12,7 (½)           | Ø 12,7 (½)        |  |
| Заводская заправка                                                 | КГ              | 5,6              | 5,6                 | 8,3                  | 8,9               |  |
| Хладагент                                                          |                 |                  |                     | 10A                  |                   |  |
| Электрические параметры                                            |                 |                  |                     |                      |                   |  |
| Электропитание                                                     | В/ф/Гц          | 400/3/50         |                     |                      |                   |  |
| Макс. потр. ток                                                    | A               | 16,0             | 20,0                | 23,3                 | 27,7              |  |
| Кабель электропитания                                              | MM <sup>2</sup> | 5x4,0            | 7-                  | 5×6,0                | ·                 |  |
| Межблочный кабель                                                  | MM <sup>2</sup> | 5×6,0<br>2×0,75  |                     |                      |                   |  |



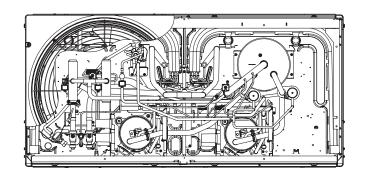

|                                                                    |                 |                                        |                   | Хладагент R410A   |                   |                 |  |
|--------------------------------------------------------------------|-----------------|----------------------------------------|-------------------|-------------------|-------------------|-----------------|--|
|                                                                    |                 | RAS-16FSXNS2E                          | RAS-18FSXNS2E     | RAS-20FSXNS2E     | RAS-22FSXNS2E     | RAS-24FSXNS2E   |  |
| Производительность, охлаждение                                     |                 |                                        |                   |                   |                   |                 |  |
| Производительность                                                 | кВт             | 45,00                                  | 50,00             | 56,00             | 61,50             | 67,00           |  |
| Потребляемая мощность                                              | кВт             | 15,64                                  | 17,64             | 19,75             | 22,53             | 24,64           |  |
| Коэффициент энергоэффективност                                     | и EER           | 2,64                                   | 2,84              | 3,01              | 3,01              | 2,99            |  |
| Коэффициент сезонной<br>энергоэффективности SEER                   |                 | 7,2                                    | 6,73              | 6,29              | 6,76              | 6,20            |  |
| Гарантированный диапазон рабо-<br>них температур наружного воздуха | °C (CT)         |                                        |                   | -10+52            |                   |                 |  |
| Производительность, нагрев                                         |                 |                                        |                   |                   |                   |                 |  |
| Производительность                                                 | кВт             | 50,0                                   | 56,0              | 63,0              | 69,0              | 77,5            |  |
| Потребляемая мощность                                              | кВт             | 15,14                                  | 16,65             | 17,99             | 20,54             | 22,37           |  |
| Коэффициент энергоэффективност                                     | и СОР           | 4,04                                   | 3,00              | 3,35              | 3,19              | 3,40            |  |
| Коэффициент сезонной энергоэфф<br>ности SCOP                       | ектив-          | 4,67                                   | 4,35              | 4,14              | 4,                | 43              |  |
| арантированный диапазон рабоних температур наружного воздуха       | °C (MT)         |                                        |                   | -25+15            |                   |                 |  |
| Наружный блок                                                      |                 |                                        |                   |                   |                   |                 |  |
| /ровень звуковой мощности                                          | дБ(А)           | 83                                     | 85                | 84                | 84                | 85              |  |
| /ровень звукового давления                                         | дБ(А)           | 62                                     | 64                | 64                | 65                | 65              |  |
| Расход воздуха (охлаждение)                                        | м³/мин          | 256                                    | 263               | 329               | 329               | 348             |  |
| Габаритные размеры (В × Д × Г)                                     | ММ              | 1793 x 1208 x 770                      | 1793 x 1208 x 770 | 1793 x 1598 x 770 | 1793 x 1598 x 770 | 1793 x 1598 x 7 |  |
| Зес (нетто/брутто)                                                 | КГ              | 272/281                                | 272/281           | 350/361           | 350/361           | 375/386         |  |
| Макс. кол-во подключаемых ВБ                                       |                 | 52                                     | 58                |                   | 64                |                 |  |
| Вагрузка НБ (мин–макс)                                             | %               |                                        |                   | 50-130            |                   |                 |  |
| Компрессор: Тип                                                    |                 | Герметичный спиральный с впрыском пара |                   |                   |                   |                 |  |
| Компрессор: Количество                                             |                 | 1                                      | 1                 | 2                 | 2                 | 2               |  |
| <b>Тараметры трубопровода:</b>                                     |                 |                                        |                   | ,                 |                   |                 |  |
| Цвухтрубная система                                                |                 |                                        |                   |                   |                   |                 |  |
| жидкость                                                           | мм              | Ø 12,7 (½)                             | Ø 15,88 (%)       | Ø 15,88 (5%)      | Ø 15,88 (5%)      | Ø 15,88 (%)     |  |
| газ                                                                | (дюйм)          | Ø 28,58 (11/8)                         | Ø 28,58 (11/8)    | Ø 28,58 (1½)      | Ø 28,58 (1½)      | Ø 28,58 (11/8)  |  |
| Грехтрубная система                                                |                 |                                        |                   |                   |                   |                 |  |
| кидкость                                                           |                 | Ø 28,58 (11/8)                         | Ø 28,58 (11/8)    | Ø 28,58 (1½)      | Ø 28,58 (11/8)    | Ø 28,58 (11/8)  |  |
| газ (низкого давления)                                             | мм<br>(дюйм)    | Ø 22,2 (%)                             | Ø 22,2 (%)        | Ø 22,2 (%)        | Ø 25,4(1)         | Ø 25,4(1)       |  |
| газ (высокого давления)                                            | (ДЮИМ)          | Ø 12,7 (½)                             | Ø 15,88 (%)       | Ø 15,88 (%)       | Ø 15,88 (%)       | Ø 15,88 (%)     |  |
| Ваводская заправка                                                 | КГ              | 9,5                                    | 10,2              | 11,2              | 11,2              | 11,5            |  |
| Кладагент                                                          |                 |                                        |                   | R410A             |                   |                 |  |
| Электрические параметры                                            |                 |                                        |                   |                   |                   |                 |  |
| Электропитание                                                     | В/ф/Гц          |                                        |                   | 400/3/50          |                   |                 |  |
| Макс. потр. ток                                                    | А               | 32,7                                   | 39,7              | 40,0              | 42,7              | 53,0            |  |
| Кабель электропитания                                              | MM <sup>2</sup> | 5×6,0                                  |                   | 5×1               | 10,0              |                 |  |
| Межблочный кабель                                                  | MM <sup>2</sup> |                                        |                   | 2×0,75            |                   |                 |  |

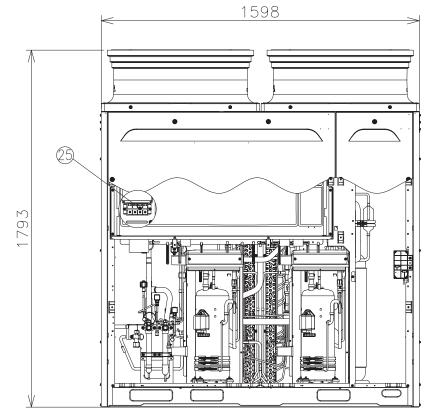

#### RAS-8FSXNS2E, RAS-10FSXNS2E, RAS-12FSXNS2E

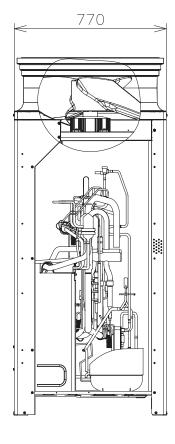






# RAS-14FSXNS2E, RAS-16FSXNS2E, RAS-18FSXNS2E






#### RAS-20FSXNS2E, RAS-22FSXNS2E, RAS-24FSXNS2E







|                                                                     | -            |                                | Хладаге                        |                                        |                                |  |
|---------------------------------------------------------------------|--------------|--------------------------------|--------------------------------|----------------------------------------|--------------------------------|--|
|                                                                     |              | RAS-26FSXNS2E                  | RAS-28FSXNS2E                  | RAS-30FSXNS2E                          | RAS-32FSXNS2E                  |  |
| Комбинация модулей                                                  |              | RAS-12FSXNS2E<br>RAS-14FSXNS2E | RAS-12FSXNS2E<br>RAS-16FSXNS2E | RAS-12FSXNS2E<br>RAS-18FSXNS2E         | RAS-14FSXNS2E<br>RAS-18FSXNS2E |  |
| Рефнеты                                                             | ,            |                                |                                |                                        |                                |  |
| Двухтрубная система                                                 |              | MC-21AN1                       | MC-21AN1                       | MC-21AN1                               | MC-21AN1                       |  |
| Трехтрубная система                                                 |              | MC-21XN1                       | MC-21XN1                       | MC-21XN1                               | MC-21XN1                       |  |
| Производительность, охлаждение                                      |              |                                |                                |                                        |                                |  |
| Производительность                                                  | кВт          | 73,5                           | 78,5                           | 83,5                                   | 90,0                           |  |
| Потребляемая мощность                                               | кВт          | 24,38                          | 26,07                          | 28,07                                  | 31,59                          |  |
| Коэффициент энергоэффективнос                                       | сти EER      | 2,79                           | 2,85                           | 2,98                                   | 2,69                           |  |
| Коэффициент сезонной энергоэфо<br>ности SEER                        | фектив-      | 6,75                           | 6,90                           | 6,67                                   | 6,80                           |  |
| Гарантированный диапазон<br>рабочих температур наружного<br>воздуха | °C (CT)      |                                | -10.                           | +52                                    |                                |  |
| Производительность, нагрев                                          |              |                                |                                |                                        |                                |  |
| Производительность                                                  | кВт          | 82,5                           | 90,0                           | 95,0                                   | 100,0                          |  |
| Потребляемая мощность                                               | кВт          | 22,01                          | 25,71                          | 27,21                                  | 28,10                          |  |
| Коэффициент энергоэффективнос                                       | сти СОР      | 3,61                           | 3,71                           | 3,13                                   | 3,33                           |  |
| Коэффициент сезонной<br>энергоэффективности SCOP                    |              | 4,32                           | 4,38                           | 4,20                                   | 4,35                           |  |
| Гарантированный диапазон<br>рабочих температур наружного<br>воздуха | °C (MT)      | -25+15                         |                                |                                        |                                |  |
| Наружный блок                                                       |              |                                |                                |                                        |                                |  |
| Уровень звуковой мощности                                           | дБ(А)        | 84                             | 85                             | 86                                     | 85                             |  |
| Уровень звукового давления                                          | дБ(А)        | 63                             | 64                             | 65                                     | 64                             |  |
| Расход воздуха (охлаждение)                                         | м³/мин       | 239 + 198                      | 256 + 198                      | 263 + 198                              | 263 + 239                      |  |
| Габаритные размеры (В × Д × Г)                                      | ММ           | 1793 × 2176 x 770              | 1793 × 2176 x 770              | 1793 × 2176 x 770                      | 1793 × 2436 × 77               |  |
| Вес (нетто)                                                         | КГ           | 271 + 217                      | 272 + 217                      | 272 + 217                              | 272 + 271                      |  |
| Вес (брутто)                                                        | КГ           | 280 + 225                      | 281 + 225                      | 281 + 225                              | 281 + 280                      |  |
| Макс. кол-во подключаемых ВБ                                        |              |                                | 6                              | 4                                      |                                |  |
| Загрузка НБ (мин–макс)                                              | %            |                                | 50-                            | 200                                    |                                |  |
| Компрессор: тип / количество                                        |              | Спирал                         | пиральный/2 Спираль            |                                        | льный/3                        |  |
| Параметры трубопровода:                                             |              |                                |                                |                                        |                                |  |
| Двухтрубная система                                                 |              |                                |                                |                                        |                                |  |
| жидкость                                                            | MM           |                                | 19,05                          | 5 (3/4)                                |                                |  |
| газ                                                                 | (дюйм)       |                                | 31,75                          | (11/4)                                 |                                |  |
| Трехтрубная система                                                 |              |                                |                                |                                        |                                |  |
| жидкость                                                            |              |                                | 19,05                          | 5 (3/4)                                |                                |  |
| газ (низкого давления)                                              | мм<br>(дюйм) |                                | 31,75                          | (1 <sup>1</sup> / <sub>4</sub> )       |                                |  |
| газ (высокого давления)                                             | (дюим)       | 25,4 (1)                       |                                | 28,58 (1 <sup>1</sup> / <sub>8</sub> ) |                                |  |
| Заводская заправка                                                  | КГ           | 17,2                           | 17,8                           | 18,5                                   | 19,1                           |  |
| <br>Хладагент                                                       |              |                                |                                | 10A                                    |                                |  |
| Электрические параметры                                             |              |                                |                                |                                        |                                |  |
| Электропитание                                                      | В/ф/Гц       |                                | 400/                           | 3/50                                   |                                |  |
| Макс. потр. ток                                                     | A            | 51,0                           | 56,0                           | 63,0                                   | 67,4                           |  |
|                                                                     |              |                                |                                |                                        |                                |  |

|                                                                     |                 | Хладагент R410A                |                                  |                                |                                  |  |  |
|---------------------------------------------------------------------|-----------------|--------------------------------|----------------------------------|--------------------------------|----------------------------------|--|--|
|                                                                     |                 | RAS-34FSXNS2E                  | RAS-36FSXNS2E                    | RAS-38FSXNS2E                  | RAS-40FSXNS2E                    |  |  |
| Комбинация модулей                                                  |                 | RAS-16FSXNS2E<br>RAS-18FSXNS2E | RAS-18FSXNS2E<br>RAS-18FSXNS2E   | RAS-14FSXNS2E<br>RAS-24FSXNS2E | RAS-18FSXNS2E<br>RAS-22FSXNS2E   |  |  |
| Рефнеты                                                             |                 |                                |                                  |                                |                                  |  |  |
| Двухтрубная система                                                 |                 | MC-21AN1                       | MC-21AN1                         | MC-21AN1                       | MC-21AN1                         |  |  |
| Трехтрубная система                                                 |                 | MC-21XN1                       | MC-21XN1                         | MC-21XN1                       | MC-21XN1                         |  |  |
| Производительность, охлаждение                                      |                 |                                |                                  |                                |                                  |  |  |
| Производительность                                                  | кВт             | 95,0                           | 100,0                            | 106,5                          | 111,5                            |  |  |
| Потребляемая мощность                                               | кВт             | 33,28                          | 35,27                            | 38,17                          | 40,16                            |  |  |
| Коэффициент энергоэффективно                                        | сти EER         | 2,74                           | 2,84                             | 2,69                           | 2,78                             |  |  |
| Коэффициент сезонной энергоэф<br>ности SEER                         | фектив-         | 6,93                           | 6,73                             | 6,55                           | 6,40                             |  |  |
| Гарантированный диапазон<br>рабочих температур наружного<br>воздуха | °C (CT)         |                                | 10                               | .+52                           |                                  |  |  |
| Производительность, нагрев                                          | ,               |                                |                                  |                                |                                  |  |  |
| Производительность                                                  | кВт             | 106,00                         | 112,00                           | 118,00                         | 125,00                           |  |  |
| Потребляемая мощность                                               | кВт             | 31,80                          | 33,30                            | 36,73                          | 37,19                            |  |  |
| Коэффициент энергоэффективно                                        | сти СОР         | 3,42                           | 3,00                             | 3,62                           | 3,19                             |  |  |
| Коэффициент сезонной<br>энергоэффективности SCOP                    |                 | 4,40                           | 4,25                             | 4,40                           | 4,27                             |  |  |
| Гарантированный диапазон<br>рабочих температур наружного<br>воздуха | °C (MT)         | -25+15                         |                                  |                                |                                  |  |  |
| Наружный блок                                                       |                 |                                |                                  |                                |                                  |  |  |
| Уровень звуковой мощности                                           | дБ(А)           | 86                             | 87                               | 86                             | 87                               |  |  |
| Уровень звукового давления                                          | дБ(А)           | 65                             | 66                               | 66                             | 67                               |  |  |
| Расход воздуха (охлаждение)                                         | м³/мин          | 263 + 256                      | 263 + 263                        | 350 + 272                      | 350 + 272                        |  |  |
| Габаритные размеры (В×Д× Г)                                         | ММ              | 1793 × 24                      | 436 × 770                        | 1793 × 2826 × 770              |                                  |  |  |
| Вес (нетто)                                                         | КГ              | 272 + 272                      | 272 + 272                        | 350 + 272                      | 350 + 272                        |  |  |
| Вес (брутто)                                                        | КГ              | 281 + 281                      | 281 + 281                        | 361 + 281                      | 361 + 281                        |  |  |
| Макс. кол-во подключаемых ВБ                                        |                 |                                |                                  | 54                             |                                  |  |  |
| <br>Загрузка НБ (мин–макс)                                          | %               |                                | 50-                              | -200                           |                                  |  |  |
| Компрессор: тип / количество                                        |                 | Спиральный/3                   |                                  | Спиральный/4                   |                                  |  |  |
| Параметры трубопровода:                                             |                 |                                |                                  |                                |                                  |  |  |
| Двухтрубная система                                                 |                 |                                |                                  |                                |                                  |  |  |
| жидкость                                                            | ММ              |                                | 19.0                             | 5 (³/ <sub>4</sub> )           |                                  |  |  |
| газ                                                                 | мм<br>(дюйм)    | 31,75 (1 1/4)                  |                                  | 38,1 (1 1/2)                   |                                  |  |  |
| Трехтрубная система                                                 |                 | , - \ 14                       |                                  | -7 \ 14                        |                                  |  |  |
| жидкость                                                            |                 |                                | 19 0                             | 5 (3/4)                        |                                  |  |  |
| газ (низкого давления)                                              | ММ              | 31,75 (1 ¹/₄)                  | 15,00                            | 38,1 (11/2)                    |                                  |  |  |
| газ (высокого давления)                                             | (дюйм)          |                                | (1 <sup>1</sup> / <sub>8</sub> ) |                                | (1 <sup>1</sup> / <sub>4</sub> ) |  |  |
| Заводская заправка                                                  | КГ              | 19,7                           | 20,4                             | 20,7                           | 21,4                             |  |  |
|                                                                     | NI              | 19,1                           |                                  | 20,7<br>10A                    | 21,4                             |  |  |
| Хладагент<br>Электрические параметры                                |                 |                                | K4.                              | TVD                            |                                  |  |  |
|                                                                     | B/dr/Cu         |                                | 400                              | /3/50                          |                                  |  |  |
| Электропитание                                                      | В/ф/Гц          | 72.4                           |                                  |                                | 02.4                             |  |  |
| Макс. потр. ток                                                     | A               | 72,4                           | 79,4                             | 75,4                           | 82,4                             |  |  |
| Межблочный кабель                                                   | MM <sup>2</sup> |                                | 2×0                              | 0,75                           |                                  |  |  |



|                                                                  | <u> </u>        | Хладагент R410A                |                                |                                  |                                |  |  |
|------------------------------------------------------------------|-----------------|--------------------------------|--------------------------------|----------------------------------|--------------------------------|--|--|
|                                                                  |                 | RAS-42FSXNS2E                  | RAS-44FSXNS2E                  | RAS-46FSXNS2E                    | RAS-48FSXNS2E                  |  |  |
| Комбинация модулей                                               |                 | RAS-18FSXNS2E<br>RAS-24FSXNS2E | RAS-22FSXNS2E<br>RAS-22FSXNS2E | RAS-22FSXNS2E<br>RAS-24FSXNS2E   | RAS-24FSXNS2E<br>RAS-24FSXNS2E |  |  |
| Рефнеты                                                          | ,               | ,                              |                                |                                  |                                |  |  |
| Двухтрубная система                                              |                 | MC-21AN1                       | MC-21AN1                       | MC-21AN1                         | MC-21AN1                       |  |  |
| Трехтрубная система                                              |                 | MC-21XN1                       | MC-21XN1                       | MC-21XN1                         | MC-21XN1                       |  |  |
| Іроизводительность, охлаждение                                   | ,               | ,                              |                                |                                  |                                |  |  |
| Троизводительность                                               | кВт             | 117,0                          | 123,0                          | 128,5                            | 134,0                          |  |  |
| Іотребляемая мощность                                            | кВт             | 42,27                          | 45,05                          | 47,16                            | 49,27                          |  |  |
| оэффициент энергоэффективнос                                     | ти EER          | 2,77                           | 2,73                           | 2,72                             | 2,72                           |  |  |
| оэффициент сезонной энергоэфф<br>ости SEER                       | ректив-         | 6,40                           | 6,17                           | 6,18                             | 6,19                           |  |  |
| арантированный диапазон<br>абочих температур наружного<br>оздуха | °C (CT)         |                                | -10                            | +52                              |                                |  |  |
| Іроизводительность, нагрев                                       |                 |                                |                                |                                  |                                |  |  |
| <b>Троизводительность</b>                                        | кВт             | 132,00                         | 140,00                         | 145,00                           | 150,00                         |  |  |
| Іотребляемая мощность                                            | кВт             | 39,03                          | 41,07                          | 42,91                            | 44,73                          |  |  |
| Соэффициент энергоэффективнос                                    | ти СОР          | 3,25                           | 3,36                           | 3,41                             | 3,47                           |  |  |
| Коэффициент сезонной энергоэффектив-<br>ности SCOP               |                 | 4,24                           | 4,29                           | 4,26                             | 4,24                           |  |  |
| арантированный диапазон<br>абочих температур наружного<br>оздуха | °C (MT)         | -25+15                         |                                |                                  |                                |  |  |
| Іаружный блок                                                    |                 |                                |                                |                                  |                                |  |  |
| ровень звуковой мощности                                         | дБ(А)           | 87                             | 86                             | 87                               | 87                             |  |  |
| ровень звукового давления                                        | дБ(А)           | 67                             | 67                             | 67                               | 67                             |  |  |
| асход воздуха (охлаждение)                                       | м³/мин          | 348 + 263                      | 329 + 329                      | 348 + 329                        | 348 + 348                      |  |  |
| абаритные размеры (В × Д × Г)                                    | мм              | 1793 × 2826 × 770              | 1793 × 3216 × 770              | 1793 × 3216 × 770                | 1793 × 3216 × 770              |  |  |
| вес (нетто)                                                      | КГ              | 375 + 272                      | 350 + 350                      | 375 + 350                        | 375 + 375                      |  |  |
| ес (брутто)                                                      | КГ              | 386 + 281                      | 361 + 361                      | 386 + 361                        | 386 + 386                      |  |  |
| Лакс. кол-во подключаемых ВБ                                     |                 |                                | 6                              | 4                                |                                |  |  |
| агрузка НБ (мин–макс)                                            | %               |                                | 50-                            | 200                              |                                |  |  |
| Компрессор: тип / количество                                     |                 | Спиралі                        | ьный/4                         | Спирал                           | ьный/5                         |  |  |
| араметры трубопровода:                                           |                 |                                |                                |                                  |                                |  |  |
| вухтрубная система                                               |                 |                                |                                |                                  |                                |  |  |
| кидкость                                                         | ММ              |                                | 19,05                          | 5 (3/4)                          |                                |  |  |
| аз                                                               | (дюйм)          |                                | 38,1                           | (1 <sup>1</sup> / <sub>2</sub> ) |                                |  |  |
| рехтрубная система                                               |                 |                                |                                |                                  |                                |  |  |
| кидкость                                                         |                 |                                | 19,05                          | 5 (3/4)                          |                                |  |  |
| аз (низкого давления)                                            | мм<br>(дюйм)    | 38,1 (1¹/₂)                    |                                |                                  |                                |  |  |
| аз (высокого давления)                                           | (ДЮИМ)          | 31,75 (1¹/₄)                   |                                |                                  |                                |  |  |
| аводская заправка                                                | КГ              | 21,7                           | 22,4                           | 22,7                             | 23,0                           |  |  |
| (ладагент                                                        |                 |                                |                                | 10A                              |                                |  |  |
| лектрические параметры                                           | 1               |                                |                                |                                  |                                |  |  |
| )<br>Лектропитание                                               | В/ф/Гц          |                                | 400/                           | 3/50                             |                                |  |  |
| Лакс. потр. ток                                                  | A               | 92,7                           | 85,4                           | 95,7                             | 106,0                          |  |  |
| Лежблочный кабель                                                | MM <sup>2</sup> | ·                              | 2×0                            |                                  | ,                              |  |  |
|                                                                  |                 |                                |                                |                                  |                                |  |  |

## Стандартная серия air365 Мах

|                                                                     | _            | Хладагент R410A                                 |                                                 |                                                 |                                                 |  |  |
|---------------------------------------------------------------------|--------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--|--|
|                                                                     |              | RAS-50FSXNS2E                                   | RAS-52FSXNS2E                                   | RAS-54FSXNS2E                                   | RAS-56FSXNS2E                                   |  |  |
| Комбинация модулей                                                  |              | RAS-14FSXNS2E<br>RAS-18FSXNS2E<br>RAS-18FSXNS2E | RAS-16FSXNS2E<br>RAS-18FSXNS2E<br>RAS-18FSXNS2E | RAS-18FSXNS2E<br>RAS-18FSXNS2E<br>RAS-18FSXNS2E | RAS-14FSXNS2E<br>RAS-18FSXNS2E<br>RAS-24FSXNS2E |  |  |
| Рефнеты                                                             |              |                                                 |                                                 |                                                 |                                                 |  |  |
| Двухтрубная система                                                 |              | MC-30AN1                                        | MC-30AN1                                        | MC-30AN1                                        | MC-NP31SA                                       |  |  |
| Трехтрубная система                                                 |              | MC-31XN1                                        | MC-30XN1                                        | MC-30XN1                                        |                                                 |  |  |
| Производительность, охлаждение                                      |              |                                                 |                                                 |                                                 |                                                 |  |  |
| Производительность                                                  | кВт          | 140,0                                           | 145,0                                           | 150,0                                           | 157,0                                           |  |  |
| Потребляемая мощность                                               | кВт          | 49,23                                           | 50,91                                           | 52,91                                           | 55,81                                           |  |  |
| Коэффициент энергоэффективнос                                       | ти EER       | 2,74                                            | 2,77                                            | 2,84                                            | 2,73                                            |  |  |
| Коэффициент сезонной энергоэфф<br>ности SEER                        | ектив-       | 6,78                                            | 6,86                                            | 6,73                                            | 6,61                                            |  |  |
| Гарантированный диапазон<br>рабочих температур наружного<br>воздуха | °C (CT)      |                                                 | -10.                                            | +52                                             |                                                 |  |  |
| Производительность, нагрев                                          |              |                                                 |                                                 |                                                 |                                                 |  |  |
| Производительность                                                  | кВт          | 155,00                                          | 160,00                                          | 165,00                                          | 176,00                                          |  |  |
| Потребляемая мощность                                               | кВт          | 44,76                                           | 48,45                                           | 49,95                                           | 53,38                                           |  |  |
| Коэффициент энергоэффективнос                                       | ти СОР       | 3,21                                            | 3,26                                            | 3,00                                            | 3,40                                            |  |  |
| Коэффициент сезонной энергоэффектив-<br>ности SCOP                  |              | 4,32                                            | 4,35                                            | 4,25                                            | 4,35                                            |  |  |
| Гарантированный диапазон<br>рабочих температур наружного<br>воздуха | °C (MT)      | -25+15                                          |                                                 |                                                 |                                                 |  |  |
| Наружный блок                                                       |              |                                                 |                                                 |                                                 |                                                 |  |  |
| Уровень звуковой мощности                                           | дБ(А)        | 87                                              | 87                                              | 88                                              | 87                                              |  |  |
| Уровень звукового давления                                          | дБ(А)        | 66                                              | 66                                              | 67                                              | 67                                              |  |  |
| Расход воздуха (охлаждение)                                         | м³/мин       | 263 + 263 + 239                                 | 263 + 263 + 256                                 | 263 + 263 + 263                                 | 329 + 263 + 256                                 |  |  |
| Габаритные размеры (В × Д × Г)                                      | ММ           | 1793 × 3664 × 770                               | 1793 × 3664 × 770                               | 1793 × 3664 × 770                               | 1793 × 4054 × 770                               |  |  |
| Вес (нетто)                                                         | КГ           | 272 + 272 + 271                                 | 272 + 272 + 272                                 | 272 + 272 + 272                                 | 350 + 272 + 271                                 |  |  |
| Вес (брутто)                                                        | КГ           | 281 + 281 + 280                                 | 281 + 281 + 281                                 | 281 + 281 + 281                                 | 361 + 281 + 281                                 |  |  |
| Макс. кол-во подключаемых ВБ                                        |              |                                                 | 6                                               | 54                                              |                                                 |  |  |
| Загрузка НБ (мин–макс)                                              | %            |                                                 | 50-                                             | -200                                            |                                                 |  |  |
| Компрессор: тип / количество                                        |              | Спиральный/5                                    | Спиральный/6                                    |                                                 |                                                 |  |  |
| Параметры трубопровода:                                             |              |                                                 |                                                 |                                                 |                                                 |  |  |
| Двухтрубная система                                                 |              |                                                 |                                                 |                                                 |                                                 |  |  |
| жидкость                                                            | ММ           |                                                 | 19,05 (3/4)                                     |                                                 |                                                 |  |  |
| газ                                                                 | (дюйм)       |                                                 | 38,1 (1 1/2)                                    |                                                 | 44,45 (1 ³/ <sub>4</sub> )                      |  |  |
| Трехтрубная система:                                                |              |                                                 |                                                 |                                                 |                                                 |  |  |
| жидкость                                                            |              |                                                 | 19,05 (3/4)                                     |                                                 | _                                               |  |  |
| газ (низкого давления)                                              | мм<br>(дюйм) |                                                 | 38,1 (11/2)                                     |                                                 | _                                               |  |  |
| газ (высокого давления)                                             | (HIOMINI)    |                                                 | 31,75 (1 1/4)                                   |                                                 | _                                               |  |  |
| Заводская заправка                                                  | КГ           | 29,3                                            | 29,9                                            | 30,6                                            | 30,9                                            |  |  |
| Хладагент                                                           |              |                                                 |                                                 | 10A                                             |                                                 |  |  |
| Электрические параметры                                             |              |                                                 |                                                 |                                                 |                                                 |  |  |
| Электропитание                                                      | В/ф/Гц       |                                                 | 400,                                            | /3/50                                           |                                                 |  |  |
| Макс. потр. ток                                                     | Α            | 107,1                                           | 112,1                                           | 119,1                                           | 115,1                                           |  |  |
|                                                                     |              |                                                 |                                                 |                                                 |                                                 |  |  |



|                                                                              | _                            |                                                 |                                                 | Хладагент R410A                                 |                                                 |                                                 |  |
|------------------------------------------------------------------------------|------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--|
|                                                                              |                              | RAS-58FSXNS2E                                   | RAS-60FSXNS2E                                   | RAS-62FSXNS2E                                   | RAS-64FSXNS2E                                   | RAS-66FSXNS2E                                   |  |
| Комбинация модулей                                                           |                              | RAS-18FSXNS2E<br>RAS-18FSXNS2E<br>RAS-22FSXNS2E | RAS-18FSXNS2E<br>RAS-18FSXNS2E<br>RAS-24FSXNS2E | RAS-14FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E | RAS-18FSXNS2E<br>RAS-22FSXNS2E<br>RAS-24FSXNS2E | RAS-18FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E |  |
| Рефнеты                                                                      |                              |                                                 |                                                 |                                                 |                                                 |                                                 |  |
| Двухтрубная система                                                          | 9                            | MC-NP31SA                                       | MC-NP31SA                                       | MC-NP31SA                                       | MC-NP31SA                                       | MC-NP31SA                                       |  |
| Производительность, охлажден                                                 | ние                          |                                                 |                                                 |                                                 |                                                 |                                                 |  |
| Производительность                                                           | кВт                          | 161,5                                           | 167,0                                           | 173,0                                           | 178,5                                           | 184,0                                           |  |
| Потребляемая мощность                                                        | кВт                          | 57,8                                            | 59,91                                           | 62,69                                           | 66,92                                           | 66,91                                           |  |
| Коэффициент<br>энергоэффективности EER                                       |                              | 2,79                                            | 2,79                                            | 2,76                                            | 2,75                                            | 2,75                                            |  |
| Коэффициент сезонной<br>энергоэффективности SEER                             |                              | 6,50                                            | 6,50                                            | 6,31                                            | 6,21                                            | 6,32                                            |  |
| Гарантированный диа-<br>пазон рабочих температур<br>наружного воздуха        | °C (CT)                      |                                                 |                                                 | -10+52                                          |                                                 |                                                 |  |
| Производительность, нагрев                                                   |                              |                                                 |                                                 |                                                 |                                                 |                                                 |  |
| Производительность                                                           | кВт                          | 181,0                                           | 188,0                                           | 196,0                                           | 202,0                                           | 207,0                                           |  |
| Потребляемая мощность                                                        | кВт                          | 53,84                                           | 55,68                                           | 59,91                                           | 59,57                                           | 61,39                                           |  |
| Коэффициент<br>энергоэффективности СОР                                       |                              | 3,13                                            | 3,17                                            | 3,25                                            | 3,29                                            | 3,33                                            |  |
| Коэффициент сезонной<br>энергоэффективности SCOP                             |                              |                                                 | 4,24                                            | 4,28                                            | 4,25                                            | 4,23                                            |  |
| арантированный диа-<br>назон рабочих температур °C (МТ)<br>наружного воздуха |                              |                                                 |                                                 | -25+15                                          |                                                 |                                                 |  |
| Наружный блок                                                                |                              |                                                 |                                                 |                                                 |                                                 |                                                 |  |
| Уровень звуковой<br>мощности                                                 | дБ(А)                        | 88                                              | 88                                              | 87                                              | 88                                              | 88                                              |  |
| Уровень звукового<br>давления                                                | дБ(А)                        | 67                                              | 67                                              | 68                                              | 68                                              | 68                                              |  |
| Расход воздуха<br>(охлаждение)                                               | м³/мин                       | 329 + 263 + 263                                 | 348+ 263 + 263                                  | 329 + 329 + 263                                 | 348 + 329 + 263                                 | 348 + 348 + 263                                 |  |
| Габаритные размеры<br>(В × Д × Г)                                            | мм                           | 1793 x 4054 x 770                               | 1793 x 4054 x 770                               | 1793 x 4444 x 770                               | 1793 x 4444 x 770                               | 1793 x 4444 x 77                                |  |
| Вес (нетто)                                                                  | КГ                           | 350 + 272 + 272                                 | 375 + 272 + 272                                 | 350 + 350 + 272                                 | 375 + 350 + 272                                 | 375 + 375 + 272                                 |  |
| Вес (брутто)                                                                 | КГ                           | 361 + 281 + 281                                 | 386 + 281 + 281                                 | 361 + 361 +281                                  | 386 + 361 + 281                                 | 386 + 386 + 281                                 |  |
| Макс. кол-во подключаемых                                                    | ВБ                           |                                                 |                                                 | 64                                              |                                                 |                                                 |  |
| Загрузка НБ (мин–макс)                                                       | %                            |                                                 |                                                 | 50-200                                          |                                                 |                                                 |  |
| Компрессор: тип / количеств                                                  | Компрессор: тип / количество |                                                 | ьный/6                                          | Спиральный/5                                    | Спирал                                          | іьный/6                                         |  |
| Параметры трубопровода:                                                      |                              |                                                 |                                                 |                                                 |                                                 |                                                 |  |
| Двухтрубная система:                                                         |                              |                                                 |                                                 |                                                 |                                                 |                                                 |  |
| жидкость                                                                     | мм<br>(дюйм)                 |                                                 |                                                 | 19,05 (3/4)                                     |                                                 |                                                 |  |
| газ                                                                          |                              | 04 -                                            | 04 -                                            | 44,5 (1 ¾)                                      | 00.5                                            |                                                 |  |
| Заводская заправка                                                           | КГ                           | 31,6                                            | 31,9                                            | 32,6                                            | 32,9                                            | 33,2                                            |  |
| Хладагент<br>-                                                               |                              |                                                 |                                                 | R410A                                           |                                                 |                                                 |  |
| Электрические параметры                                                      | D/1 /=                       |                                                 |                                                 | 400/5/55                                        |                                                 |                                                 |  |
| Электропитание                                                               | В/ф/Гц                       |                                                 |                                                 | 400/3/50                                        |                                                 |                                                 |  |
| Макс. потр. ток                                                              | A                            | 122,1                                           | 132,4                                           | 125,1                                           | 135,4                                           | 145,7                                           |  |
| Межблочный кабель                                                            | MM <sup>2</sup>              |                                                 |                                                 | 2x0,75                                          |                                                 |                                                 |  |

Хладагент R410A





|                                                                       | _               |                                                                  | Хладаген                                                         |                                                                  |                                                                  |  |
|-----------------------------------------------------------------------|-----------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|--|
|                                                                       |                 | RAS-76FSXNS2E                                                    | RAS-78FSXNS2E                                                    | RAS-80FSXNS2E                                                    | RAS-82FSXNS2E                                                    |  |
| Комбинация модулей                                                    |                 | RAS-18FSXNS2E<br>RAS-18FSXNS2E<br>RAS-18FSXNS2E<br>RAS-22FSXNS2E | RAS-18FSXNS2E<br>RAS-18FSXNS2E<br>RAS-18FSXNS2E<br>RAS-24FSXNS2E | RAS-14FSXNS2E<br>RAS-18FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E | RAS-16FSXNS2E<br>RAS-18FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E |  |
| Рефнеты                                                               |                 |                                                                  |                                                                  |                                                                  |                                                                  |  |
| Двухтрубная система                                                   | а               | MC-NP40SA                                                        | MC-NP40SA                                                        | MC-NP40SA                                                        | MC-NP40SA                                                        |  |
| Производительность, охлажде                                           | ние             |                                                                  |                                                                  |                                                                  |                                                                  |  |
| Производительность                                                    | кВт             | 211,5                                                            | 217,0                                                            | 223,0                                                            | 228,5                                                            |  |
| Потребляемая мощность                                                 | кВт             | 75,44                                                            | 77,55                                                            | 80,33                                                            | 82,44                                                            |  |
| Коэффициент<br>энергоэффективности EER                                |                 | 2,80                                                             | 2,80                                                             | 2,78                                                             | 2,77                                                             |  |
| Коэффициент сезонной<br>энергоэффективности SEER                      |                 | 6,55                                                             | 6,55                                                             | 6,40                                                             | 6,40                                                             |  |
| Гарантированный диа-<br>пазон рабочих температур<br>наружного воздуха | °C (CT)         |                                                                  | -10                                                              | .+52                                                             |                                                                  |  |
| Производительность, нагрев                                            |                 |                                                                  |                                                                  |                                                                  |                                                                  |  |
| Производительность                                                    | кВт             | 237,0                                                            | 244,0                                                            | 254,0                                                            | 261,0                                                            |  |
| Потребляемая мощность                                                 | кВт             | 70,49                                                            | 72,33                                                            | 76,16                                                            | 76,95                                                            |  |
| Коэффициент<br>энергоэффективности СОР                                |                 |                                                                  | 3,13                                                             | 3,19                                                             | 3,22                                                             |  |
| ээффициент сезонной<br>нергоэффективности SCOP                        |                 | 4,26 4,24                                                        |                                                                  | 4,27                                                             | 4,25                                                             |  |
| Гарантированный диа-<br>пазон рабочих температур<br>наружного воздуха | °C (MT)         |                                                                  | -25                                                              | +15                                                              |                                                                  |  |
| Наружный блок                                                         | ,               |                                                                  |                                                                  |                                                                  |                                                                  |  |
| Уровень звуковой<br>мощности                                          | дБ(А)           | 89                                                               | 89                                                               | 89                                                               | 89                                                               |  |
| Уровень звукового<br>давления                                         | дБ(А)           | 68                                                               | 68                                                               | 69                                                               | 69                                                               |  |
| Расход воздуха<br>(охлаждение)                                        | м³/мин          | 329 + 263 + 263 + 263                                            | 348 + 263 + 263 + 263                                            | 329 + 329 + 263 + 263                                            | 348 + 329 + 263 + 26                                             |  |
| Габаритные размеры<br>(В × Д × Г)                                     | мм              | 1793 x 5282 x 770                                                | 1793 x 5282 x 770                                                | 1793 x 5672 x 770                                                | 1793 x 5672 x 770                                                |  |
| Вес (нетто)                                                           | КГ              | 350 + 272 + 272 + 272                                            | 350 + 272 + 272 + 272                                            | 350 + 350 + 272 + 272                                            | 375 + 350 + 272 + 27                                             |  |
| Вес (брутто)                                                          | КГ              | 361 + 281 + 281 + 281                                            | 386 + 281 + 281 + 281                                            | 361 + 361 + 281 + 281                                            | 386 + 361 + 281 + 28                                             |  |
| Макс. кол-во подключаемых                                             | ВБ              |                                                                  | 64                                                               | 1                                                                |                                                                  |  |
| Загрузка НБ (мин–макс)                                                | %               |                                                                  | 50-2                                                             | 200                                                              |                                                                  |  |
| Компрессор: тип / количеств                                           | 30              | Спирал                                                           | ьный/8                                                           | Спиральный/7                                                     | Спиральный/8                                                     |  |
| Параметры трубопровода:                                               |                 |                                                                  |                                                                  |                                                                  |                                                                  |  |
| Двухтрубная система                                                   |                 |                                                                  |                                                                  |                                                                  |                                                                  |  |
| жидкость                                                              | мм              |                                                                  | 22,2                                                             | (7/8)                                                            |                                                                  |  |
| газ                                                                   | (дюйм)          |                                                                  | 50,8                                                             | (2)                                                              |                                                                  |  |
| Заводская заправка                                                    | КГ              | 41,8                                                             | 42,1                                                             | 42,8                                                             | 43,1                                                             |  |
| Хладагент                                                             |                 |                                                                  | R41                                                              | 0A                                                               |                                                                  |  |
| Электрические параметры                                               |                 |                                                                  |                                                                  |                                                                  |                                                                  |  |
| Электропитание                                                        | В/ф/Гц          |                                                                  | 400/3                                                            | 3/50                                                             |                                                                  |  |
| Макс. потр. ток                                                       | Α               | 161,8                                                            | 172,1                                                            | 164,8                                                            | 175,1                                                            |  |
| Межблочный кабель                                                     | MM <sup>2</sup> |                                                                  | 2x0,                                                             | 75                                                               |                                                                  |  |

Межблочный кабель

|                                                                       | _                            | The state of the s | Хладаген                                                         |                                                                  | 1                                                                |  |
|-----------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|--|
|                                                                       |                              | RAS-84FSXNS2E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RAS-86FSXNS2E                                                    | RAS-88FSXNS2E                                                    | RAS-90FSXNS2E                                                    |  |
| Комбинация модулей                                                    |                              | RAS-18FSXNS2E<br>RAS-18FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RAS-14FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E | RAS-16FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E | RAS-18FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E |  |
| Рефнеты                                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                  |                                                                  |  |
| Двухтрубная систем                                                    | a                            | MC-NP40SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MC-NP40SA                                                        | MC-NP40SA                                                        | MC-NP40SA                                                        |  |
| Производительность, охлажде                                           | ние                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                  |                                                                  |  |
| Производительность                                                    | кВт                          | 234,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 240,0                                                            | 245,5                                                            | 251,0                                                            |  |
| Потребляемая мощность                                                 | кВт                          | 84,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87,33                                                            | 89,44                                                            | 91,55                                                            |  |
| Коэффициент<br>энергоэффективности EER                                |                              | 2,77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,75                                                             | 2,74                                                             | 2,74                                                             |  |
| Коэффициент сезонной<br>энергоэффективности SEER                      |                              | 6,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,28                                                             | 6,28                                                             | 6,29                                                             |  |
| Гарантированный диа-<br>пазон рабочих температур<br>наружного воздуха | °C (CT)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -10                                                              | .+52                                                             |                                                                  |  |
| Производительность, нагрев                                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                  |                                                                  |  |
| Производительность                                                    | кВт                          | 267,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 275,0                                                            | 282,0                                                            | 287,0                                                            |  |
| Потребляемая мощность                                                 | кВт                          | 78,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81,87                                                            | 82,67                                                            | 83,76                                                            |  |
| Коэффициент<br>энергоэффективности СОР                                |                              | 3,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,31                                                             | 3,33                                                             | 3,36                                                             |  |
| оэффициент сезонной<br>нергоэффективности SCOP                        |                              | 4,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,26                                                             | 4,25                                                             | 4,23                                                             |  |
| Гарантированный диа-<br>пазон рабочих температур<br>наружного воздуха | °C (MT)                      | -25+15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |                                                                  |                                                                  |  |
| Наружный блок                                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                  |                                                                  |  |
| Уровень звуковой<br>мощности                                          | дБ(А)                        | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                                                               | 89                                                               | 89                                                               |  |
| Уровень звукового<br>давления                                         | дБ(А)                        | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69                                                               | 69                                                               | 69                                                               |  |
| Расход воздуха<br>(охлаждение)                                        | м³/мин                       | 348 + 348 + 263 + 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 348 + 329 + 329 + 263                                            | 348 + 348 + 329 + 263                                            | 348 + 348 + 348 + 263                                            |  |
| Габаритные размеры<br>(В × Д × Г)                                     | ММ                           | 1793 x 5672 x 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1793 x 6062 x 770                                                | 1793 x 6062 x 770                                                | 1793 x 6062 x 770                                                |  |
| Вес (нетто)                                                           | КГ                           | 375 + 375 + 272 + 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 375 + 350 + 350 + 272                                            | 375 + 375 + 350 + 272                                            | 375 + 375 + 375 + 272                                            |  |
| Вес (брутто)                                                          | КГ                           | 386 + 386 + 281 + 281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 386 + 361 + 361 + 281                                            | 386 + 386 + 361 + 281                                            | 386 + 386 + 386 + 281                                            |  |
| Макс. кол-во подключаемых                                             | ВБ                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64                                                               | 4                                                                |                                                                  |  |
| Загрузка НБ (мин–макс)                                                | %                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50-2                                                             | 200                                                              |                                                                  |  |
| Компрессор: тип / количеств                                           | Сомпрессор: тип / количество |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Спиральный/7                                                     | Спирал                                                           | тьный/8                                                          |  |
| Параметры трубопровода                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                  |                                                                  |  |
| Двухтрубная система                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                  |                                                                  |  |
| жидкость                                                              | мм                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22,2 (7/8)                                                       |                                                                  | 25,4 (1)                                                         |  |
| газ                                                                   | (дюйм)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50,8                                                             | (2)                                                              |                                                                  |  |
| Заводская заправка                                                    | КГ                           | 43,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44,1                                                             | 44,4                                                             | 44,7                                                             |  |
| <br>Хладагент                                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,<br>R41                                                         |                                                                  |                                                                  |  |
| Электрические параметры                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                  |                                                                  |  |
| Электропитание                                                        | В/ф/Гц                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400/3                                                            | 3/50                                                             |                                                                  |  |
| Макс. потр. ток                                                       | A                            | 185,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 178,1                                                            | 188,4                                                            | 198,7                                                            |  |
|                                                                       |                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                | -,                                                               |                                                                  |  |

2x0,75



# Стандартная серия air365 Max

|                                                                      |         |                                                                  | Хладагент R410A                                                  |                                                                  |  |
|----------------------------------------------------------------------|---------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|--|
|                                                                      |         | RAS-92FSXNS2E                                                    | RAS-94FSXNS2E                                                    | RAS-96FSXNS2E                                                    |  |
| Комбинация модуле                                                    | й       | RAS-22FSXNS2E<br>RAS-22FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E | RAS-22FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E | RAS-24FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E<br>RAS-24FSXNS2E |  |
| <b>Р</b> ефнеты                                                      | ,       |                                                                  |                                                                  |                                                                  |  |
| Двухтрубная систем                                                   | a       | MC-NP40SA                                                        | MC-NP40SA                                                        | MC-NP40SA                                                        |  |
| Іроизводительность, охлажде                                          | ние     |                                                                  |                                                                  |                                                                  |  |
| <b>Троизводительность</b>                                            | кВт     | 257,0                                                            | 262,6                                                            | 268,0                                                            |  |
| Іотребляемая мощность                                                | кВт     | 94,33                                                            | 96,44                                                            | 98,55                                                            |  |
| Коэффициент<br>энергоэффективности EER                               |         | 2,72                                                             | 2,72                                                             | 2,72                                                             |  |
| Соэффициент сезонной<br>энергоэффективности SEER                     |         | 6,18                                                             | 6,18                                                             | 6,19                                                             |  |
| арантированный диа-<br>назон рабочих температур<br>наружного воздуха | °C (CT) |                                                                  | -10+52                                                           |                                                                  |  |
| Іроизводительность, нагрев                                           |         |                                                                  |                                                                  |                                                                  |  |
| <b>Троизводительность</b>                                            | кВт     | 293,0                                                            | 299,0                                                            | 305,0                                                            |  |
| Іотребляемая мощность                                                | кВт     | 85,82                                                            | 87,65                                                            | 89,47                                                            |  |
| Соэффициент<br>онергоэффективности СОР                               |         | 3,41                                                             | 3,44                                                             | 3,47                                                             |  |
| (оэффициент сезонной<br>энергоэффективности SCOP                     |         | 4,26                                                             | 4,25                                                             | 4,24                                                             |  |
| арантированный диа-<br>пазон рабочих температур<br>наружного воздуха | °C (MT) |                                                                  | -25+15                                                           |                                                                  |  |
| Іаружный блок                                                        | ,       |                                                                  |                                                                  |                                                                  |  |
| Уровень звуковой<br>мощности                                         | дБ(А)   | 89                                                               | 89                                                               | 89                                                               |  |
| /ровень звукового<br>цавления                                        | дБ(А)   | 69                                                               | 69                                                               | 69                                                               |  |
| Расход воздуха<br>(охлаждение)                                       | м³/мин  | 348 + 348 + 329 + 329                                            | 348 + 348 + 348 + 329                                            | 348 + 348 + 348 + 348                                            |  |
| āбаритные размеры<br>В × Д × Г)                                      | ММ      | 1793 x 6452 x 770                                                | 1793 x 6452 x 770                                                | 1793 x 6452 x 770                                                |  |
| Вес (нетто)                                                          | КГ      | 375 + 375 + 350 + 350                                            | 375 + 375 + 375 + 350                                            | 375 + 375 + 375 + 375                                            |  |
| Вес (брутто)                                                         | КГ      | 386 + 386 + 361 + 361                                            | 386 + 386 + 386 + 361                                            | 386 + 386 + 386 + 386                                            |  |
| Лакс. кол-во подключаемых                                            | ВБ      |                                                                  | 64                                                               |                                                                  |  |
| Вагрузка НБ (мин–макс)                                               | %       |                                                                  | 50-200                                                           |                                                                  |  |
| Компрессор: тип / количест                                           | 30      |                                                                  | Спиральный/8                                                     |                                                                  |  |
| <b>Тараметры трубопровода:</b>                                       |         |                                                                  |                                                                  |                                                                  |  |
| Івухтрубная система                                                  |         |                                                                  |                                                                  |                                                                  |  |
| кидкость                                                             | мм      |                                                                  | 25,4 (1)                                                         |                                                                  |  |
| аз                                                                   | (дюйм)  |                                                                  | 50,8 (2)                                                         |                                                                  |  |
| Ваводская заправка                                                   | КГ      | 45,4                                                             | 45,7                                                             | 46,0                                                             |  |
| (ладагент                                                            |         |                                                                  | R410A                                                            |                                                                  |  |
| лектрические параметры                                               |         |                                                                  |                                                                  |                                                                  |  |
|                                                                      |         |                                                                  | 400/3/50                                                         |                                                                  |  |
| Электропитание                                                       | В/ф/Гц  |                                                                  | 400/3/50                                                         |                                                                  |  |
| Электропитание<br>Макс. потр. ток                                    | В/ф/Гц  | 191,4                                                            | 201,7                                                            | 212,0                                                            |  |



# Сервисное пространство

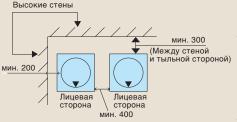
При монтаже наружного блока обеспечьте необходимое сервисное пространство.

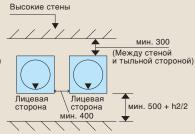
Несоблюдение рекомендаций может привести к отклонениям в работе, в связи с недостаточным поступлением воздуха, и трудностям сервисного обслуживания.


- В случае отсутствия стен спереди и сзади наружного блока требуется обеспечить следующее сервисное пространство.
  - \* Передняя сторона мин. 500 мм
  - \* Задняя сторона мин. 300 мм
  - \* Правая и левая стороны: мин. 10 мм (в случае установки защиты от снега или подключение воздуховодов, требуется обеспечит не менее 50 мм).
- Если высота стены перед наружным блоком превышает 1500 мм, требуется обеспечить не менее 500+h2/2 сервисного пространства с лицевой стороны.
- Если высота стены позади наружного блока превышает 500 мм, требуется обеспечить не менее 300 + h1/2 сервисного пространства с тыльной стороны.
- Когда блоки окружены стенами более чем с 2 сторон, требуется обеспечить сервисное пространство согласно рисункам ниже.
- Если расстояние между блоком и препятствием над блоком меньше 1500 мм или пространство над блоком закрыто, установите воздухоотвод.
- Если над блоком имеются препятствия, то четыре (передняя, задняя, правая и левая) стороны блока должны быть открыты.

# Вид сбоку Вентиляционные отверстия Лицевая сторона сторона мин. 500 + h2/2 765 мин. 300 + h1/2

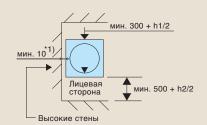
### 1. Стены с двух сторон


В случае, если блоки установлены рядом с высоким зданием, и нет стен с двух сторон, требуется обеспечить минимальное сервисное пространство с тыльной стороны блока в 300 мм.

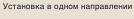

■ Одиночная установка

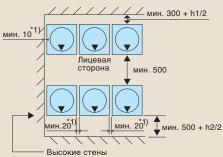





Групповая установка



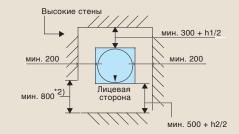




# 2. Стены с трех сторон

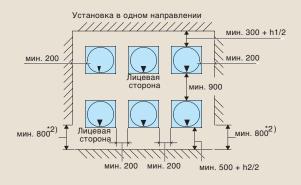
### ■ Одиночная установка

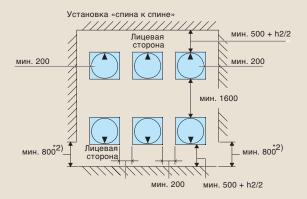


### ■ Групповая установка







### Установка «спина к спине» мин. 500 + h2/2 Лицевая сторона мин.10<sup>\*1</sup>) мин. 900 мин. 500 + h2/2 мин.201 мин. 20<sup>\*1</sup>) Высокие стены


## 3. Стены с четырех сторон

### ■ Одиночная установка



### ■ Групповая установка





### Примечание

- 1. Верхняя сторона должна быть открытой, чтобы предотвратить закольцовывание впускного и выпускного воздуха каждого наружного блока
  2. Сервисные пространства на схемах приведены для следующего режима работы охлаждение, наружная температура +35°C. В случае, если наружная температура превышает указанные параметры, произведите расчет воздушного потока.
- 3. При групповой установке каждая группа должна состоять максимум из 6 наружных блоков, обеспечивайте зазор в 1 м между каждой группой.






# **HITACHI**

# Универсальные внутренние блоки

Cooling & Heating



Внутренние блоки, производимые компанией HITACHI для оборудования типа РАС, являются универсальными и совместимыми со всеми наружными блоками серии Utopia, IVX и SET FREE. Диапазон производительности от 1,1 до 56 кВт. Управление возможно путем объединения блоков в единую сеть H-Link II. Для самых высоких требований любого объекта мы предлагаем — 12 различных типов внутренних блоков, в том числе настенные блоки с выносным расширительным вентилем, рекуперативные вентиляционные установки с расходом воздуха до 2000 м3/час, DX-КІТ комплекты для подключения к испарителям приточно-вытяжных установок, а также внутренние блоки, способные нагревать воду до 80 °C для целей отопления и горячего водоснабжения.



# Внутренние блоки System Free

|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Производительность, охлаждение |     |     |     |                                       |     |     |     |     |     |     |     |     |     |                                     |                                   |      |      |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|-----|-----|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------------------------------|-----------------------------------|------|------|
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,4                            | 0,6 | 0,8 | 1,0 | 1,3                                   | 1,5 | 1,8 | 2,0 | 2,3 | 2,5 | 3,0 | 4,0 | 5,0 | 6,0 | 8,0                                 | 10,0                              | 16,0 | 20,0 |
| 4-поточные кассетные внутренние блоки RCIM-FSRE (600x600)                       | 600×600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                              | •   | •   | •   | •                                     | •   | •   | •   | •   | •   | -   | -   | -   | -   | -                                   | -                                 | -    | -    |
| RCI-FSR(1)* (800x800)                                                           | 800×800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #                              | ·   | -   | •   | •                                     | •   | •   | •   | •   | •   | •   | •   | •   | •   | ·                                   | -                                 | i    | · -  |
| <b>2-поточные кассетные внутр</b> RCD-FSR                                       | оенние блоки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                              | -   | •   | •   | •                                     | •   | •   | •   | •   | •   | •   | •   | •   | •   | -                                   | -                                 | -    | -    |
| Подпотолочные внутренние RPC-FSR                                                | е блоки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                              | -   | -   | -   | •                                     | •   | •   | •   | •   | •   | •   | •   | •   | •   | -                                   | -                                 | -    | -    |
| Канальные внутренние блон<br>1. RPIZ<br>(компактный: до 50 Па)                  | KIN TO THE TOTAL | -                              | -   | •   | •   | •                                     | •   | •   | •   | -   | •   | •   | -   | -   | -   | -                                   | -                                 | -    | -    |
| 2. RPIL-FSR(1)E *<br>(сверхкомпактный:<br>до 100 Па)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | •   | •   | •   |                                       | •   | -   | -   | -   | -   | -   | -   | -   | -   | -                                   | -                                 | -    | -    |
| 3. RPI-FSR(1)E *<br>(средненапорный:<br>до 150 Па)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                              | -   | -   | -   | · · · · · · · · · · · · · · · · · · · | •   | •   | •   | •   | •   | •   | •   | •   | •   | · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · | -    | · -  |
| 4. RPIH-FSR(1)E * (высоконапорный: до 200 Па)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                              | =   | -   | =   |                                       |     |     | -   | ·   | =   |     | •   | •   | •   | =                                   | =                                 |      |      |
| 5. RPI-FSN3E<br>(большой мощности:<br>до 220 Па)                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                              | =   | -   |     | · · · · · · · · · · · · · · · · · ·   | ·   | ·   | ·   | ±   | ·   | i = | -   | =   | =   | •                                   | •                                 | ·    | ·    |
| 6. RPI-FSN3PE<br>(большой мощности:<br>до 220 Па)                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                              | -   | -   | -   | · · · · · · · · · · · · · · · · · · · | -   | ·   | -   | -   | -   | ·   | -   | -   | -   | · · · · · · · · · · · · · · · · ·   | -                                 | •    | •    |
| Настенные внутренние блок<br>RPK-FSR(H)M<br>Выносной ЭРВ<br>(модели RPKFSRHM)   | КИ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                              | •   | •   | •   | •                                     | •   | •   | •   | •   | •   | •   | •   | -   | -   | -                                   | -                                 | _    | -    |
| Напольные внутренние блог<br>RPF(I)-FSN2E<br>Корпусная и бескорпусная<br>версии | ки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                              | -   | -   | •   | •                                     | •   | •   | •   | •   | •   | -   | -   | -   | -   | -                                   | -                                 | -    | -    |

<sup>&#</sup>x27; RCI-FSR1, RPI(L/H)-FSR1E – доступны, пока есть в наличии

# Полупромышленные и мультизональные системы кондиционирования

# Внутренние блоки System Free

Новая линейка внутренних блоков FSR1 совместима с наружными блоками, использующими хладагенты R32 и R410A.

Напольные внутренние блоки RPF, и консольные внутренние блоки RPFI и канальные внутренние блоки производительностью более 6 л.с. работают только на хладагенте R410A.

# 4-поточные кассетные внутренние блоки







800×800 RCI-...FSR1

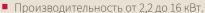






- 4-поточные кассетные внутренние блоки.
- Производительность от 1,1 до 16 кВт.
- Блоки 600 х 600 удобны для встраивания в европотолок.
- Датчик движения (опция).
- Независимое регулирование жалюзи.
- Встроенный дренажный насос, высота подъема 850 мм.
- Новая лицевая панель Twin-Sense для полноразмерных кассетных блоков

# 2-поточные кассетные внутренние блоки














- Датчик движения (опция).
- Независимое регулирование жалюзи.
- Встроенный дренажный насос, высота подъема 850 мм.

# Канальные внутренние блоки



RPIZ-HNDTS1Q RPIL/RPI/RPIH-0.4~6FSR1E RPI-8~20FSN3E RPI-4~6FSN6E-EF











- Производительность от 1,1 до 56 кВт.
- Внешний статический напор до 220 Па.
- Встроенный или опциональный дренажный насос, высота поъема конденсата до 900 мм.



# Настенные внутренние блоки









RPK-...FSRM RPK-...FSRHM

- Производительность от 1,1 до 11,2 кВт.
- Встроенный ИК-приемник.
- 4 скорости вентилятора.
- Выносной ЭРВ (модели RPK-...FSRHM).

# Напольные внутренние блоки







- Производительность от 2,2 до 7,1 кВт.
- Корпусная и бескорпусная версии.
- Толщина 220 мм.
- Возможность встраивания проводного пульта управления.













- Производительность от 3.8 до 16 кВт.
- Идеальны для помещений большой длины.
- 4 скорости вентилятора
- Возможность встраивания проводного пульта управления.

# Внутренние блоки Hydro free









Haгрев воды до 80°C RWHT-5.0VNF1E



Нагрев воды до 45 °C RWLT-5.0~10VN1E

- Совместимы с наружными блоками Set Free.
- Высокоэффективное решение для нагрева воды.
- Возможность нагрева воды до 45 °C или до 80 °C.

# Полупромышленные и мультизональные (Полупрования системы кондиционирования

# Преимущества внутренних блоков System Free

# **1** Энергосбережение с помощью датчика движения



 Внутренний блок поддерживает заданную температуру воздуха в помещении и работает с заданной скоростью вращения вентилятора.

в помещении





- Изменение значения поддерживаемой температуры воздуха в помещении ±1°С в зависимости от режима работы.
- Снижение скорости вращения вентилятора на одну ступень.





Фаза С Отсутствие активности в течение 20 мин.

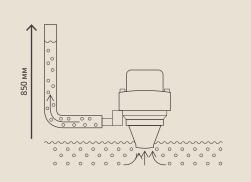
- Изменение значения поддерживаемой температуры воздуха в помещении ± 2 °С в зависимости от режима работы
- Дополнительное снижение скорости вращения вентилятора на одну ступень.





Фаза D Отсутствие активности в течение 10 мин.

- 1. Работа с настройками фазы С.
- 2. Переход в режим ожидания с возвратом к работе при обнаружении активности.
- 3. Отключение внутреннего блока с последующим включением вручную.


Датчик движения регулирует работу внутреннего блока в зависимости от количества людей в помещении. Это позволяет экономить до 14% электроэнергии. Датчик опционально доступен для всех типов кассетных внутренних блоков, подпотолочных и канальных внутренних блоков.





7 Дренажный насос

Кассетные и канальные внутренние блоки имеют встроенные дренажные насосы с высотой подъема конденсата 850 мм.



4

# Низкий уровень шума



В линейке внутренних блоков присутствуют настенные внутренние блоки с вынесенным электронно-расширительным вентилем. Электронно-расширительный вентиль монтируется за пределами обслуживаемого помешения, что позволяет снизить уровень шума внутреннего блока.

5

# Большой расход воздуха



Кассетные, канальные и настенные внутренние блоки имеют 4 скорости вращения вентилятора для достижения максимального уровня комфорта в помещении.



Все внутренние блоки System Free совместимы со всеми наружными блоками air365 Max, IVX и Utopia Prime (кроме RPF(I), канальных более 6 лс и Hydro Free).

# Возможность корректировки производительности внутреннего блока

Иногда бывает необходимо скорректировать производительность внутреннего блока, чтобы более точно соответствовать требуемой тепловой нагрузке помещения. Для некоторых внутренних блоков HITACHI это возможно сделать с помощью DIP-переключателя на плате управления. Такая операция может быть произведена в любой момент времени, даже после окончательного монтажа всей системы — на этапе оптимизации ее работы.

# Широкий выбор и полная совместимость

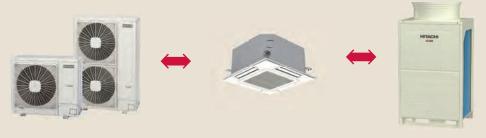
Компания HITACHI очень гордится своим системами, которые включают в себя наружные блоки моделей Utopia Prime, IVX и Set Free (VRF системы) и внутренние блоки разных моделей с возможностью индивидуального управления. Эти системы значительно расширяют ваши возможности по проектированию систем кондиционирования и обеспечивают оптимальный микроклимат во всех обслуживаемых зонах.

| Номинал внутреннего блока                            | 1,0*                   |                        | 1,                     | 1,5                    |                        | 0                      | 2,5                    |                        |  |
|------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--|
| Индекс производительности                            | 1,0                    | 1,3                    | 1,3                    | 1,5                    | 1,8                    | 2,0                    | 2,3                    | 2,5                    |  |
| Холодопроизводительность, кВт                        | 2,8                    | 3,8                    | 3,8                    | 4,0                    | 5,2                    | 5,6                    | 6,7                    | 7,1                    |  |
| Теплопроизводительность, кВт                         | 3,2                    | 4,2                    | 4,2                    | 4,8                    | 5,6                    | 6,3                    | 7,5                    | 8,5                    |  |
| DID generaling and DCM3                              | 1,0 HP                 | 1,3 HP                 | 1,3 HP                 | 1,5 HP                 | 1,8 HP                 | 2,0 HP                 | 2,3 HP                 | 2,5 HP                 |  |
| DIP-переключатель DSW3<br>на плате внутреннего блока | Заводская<br>настройка | Увеличение<br>мощности | Уменьшение<br>мощности | Заводская<br>настройка | Уменьшение<br>мощности | Заводская<br>настройка | Уменьшение<br>мощности | Заводская<br>настройка |  |

<sup>\*</sup> Настенные внутренние блоки серии RPK-FSRM.

# Наружные блоки РАС

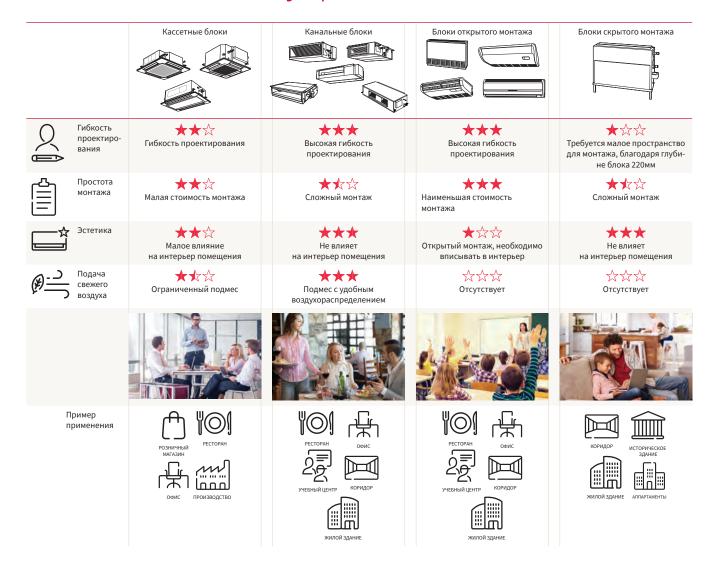
Полупромышленные системы предназначены для установки в офисных зданиях и помещениях средней площади (например, бутиках, магазинах или функционирующих круглый год вычислительных центрах). Их главным преимуществом является высокая производительность при использовании только одного наружного блока. Также возможно подключение от 1 до 4 внутренних блоков на один наружный блок. Возможность индивидуального управления микроклиматом каждого помещения делает системы на основе наружных блоков IVX чрезвычайно привлекательными для пользователей. Данные системы уже заслужили многочисленные награды за свою необыкновенно высокую энергоэффективность.


# Внутренние блоки

Для самых повышенных требований любого объекта вы можете выбирать из 12 различных типов внутренних блоков, в том числе: кассетные блоки с датчиком движения, настенные блоки с выносным расширительным вентилем, рекуперативные вентиляционные установки до 2000 м<sup>3</sup>/ч, комплекты для подключения к испарителям приточновытяжных установок DX-KIT.

### Наружные блоки Set Free

Системы Set Free представляют собой системы кондиционирования с переменным расходом хладагента (VRF) и широким спектром производительности (от 12 до 268 кВт), предназначенные для различных областей применения. Как двухтрубные, так и трехтрубные системы (с рекуперацией теплоты) отличаются простотой монтажа и высокой энергоэффективностью.


Они реализуются на базе универсальных наружных блоков — серий FSXME, FSXNS2E или FSXNP2E.





121

# Особенности внутренних блоков



# Полупромышленные и мультизональные системы кондиционирования

# Настенные внутренние блоки

















## Один из самых широких модельных рядов на рынке: 17 моделей

Hitachi предлагает модели производительностью от 0,4 до 4,0 л.с. Вы также можете использовать настройку промежуточных мощностей, чтобы внутренний блок максимально точно удовлетворял потребностям каждого проекта.

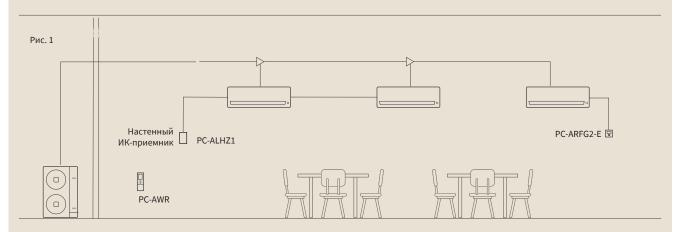
### Простая и незаметная интеграция

Внутренние блоки настолько компактны и легки, что вы можете легко установить их даже в самых неудобных для монтажа местах. Для облегчения работ по техническому обслуживанию колесо вентилятора на моделях от 2 до 4 л.с. можно заменить без снятия теплообменника.

# Непревзойденный уровень комфорта

Вы можете ограничить минимальную температуру воздуха, выходящего из внутреннего блока в режиме охлаждения. Это возможно благодаря применению датчика температуры выходящего воздуха и функции «GENTLE COOL», активация которой доступна с проводного пульта управления PC-ARFG2-E.

## Бесшумная работа


Внутренние блоки производительностью от 0,4 до 1,5 л.с. можно заказать без встроенного электронно-расширительного вентиля (серия Н). В этом электронно-расширительный (EV-1.5N1 — приобретается отдельно) монтируется вне обслуживаемого помещения, чтобы снизить уровень шума внутреннего блока. Это очень удобно при проектировании помещений со строгими требованиями к уровню шума.

### Центральное управление

Настенные внутренние блоки совместимы со всеми типами индивидуальных и центральных пультов дистанционного управления и стандартно оснащены встроенным приемником инфракрасного сигнала. Доступный в качестве опции приемник инфракрасного сигнала PC-ALHZ1 позволяет управлять несколькими устройствами с одного пульта управления (рис. 1).

### Скорость вентилятора

Используйте 4 скорости вентилятора, чтобы настроить поток воздуха для достижения максимального уровня комфорта в каждой комнате.



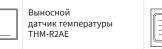


RPK-0.4FSRM RPK-0.4FSRHM RPK-0.6FSRM RPK-0.6FSRHM RPK-0.8FSRM RPK-0.8FSRHM RPK-1.0FSRM RPK-1.0FSRHM



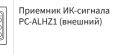





# Настенные внутренние блоки

|                                                         |                 |                              | Хладагент                    | R410A/R32                    |                                  |  |  |
|---------------------------------------------------------|-----------------|------------------------------|------------------------------|------------------------------|----------------------------------|--|--|
| Внутренний блок                                         |                 | RPK-0.4FSR(H)M<br>(0,4 л.с.) | RPK-0.6FSR(H)M<br>(0,6 л.с.) | RPK-0.8FSR(H)M<br>(0,8 π.c.) | RPK-1.0FSR(H)M<br>(1,0-1,3 л.с.) |  |  |
| Холодопроизводительность<br>(наружный блок Prime&IVX)   | кВт             | _                            | -                            | 2,00                         | 2,50                             |  |  |
| Теплопроизводительность<br>(наружный блок Prime&IVX)    | кВт             | _                            | _                            | 2,20                         | 2,80                             |  |  |
| Холодопроизводительность<br>(наружный блок SetFree)     | кВт             | 1,10                         | 1,70                         | 2,20                         | 2,80←3,80                        |  |  |
| Теплопроизводительность<br>(наружный блок SetFree)      | кВт             | 1,30                         | 1,90                         | 2,50                         | 3,20←4,20                        |  |  |
| Потребляемая мощность                                   | Вт              |                              | 3                            | 8                            |                                  |  |  |
| Уровень звукового давления<br>(SH/H/M/L)                | дБ(А)           | 32/31/30/29                  | 35/32/31/29                  | 39/35/32/30                  | 39/35/32/30                      |  |  |
| Уровень звуковой мощности<br>(SH/H/M/L)                 | дБ(А)           | 49/48/46/45                  | 49/48/46/45                  | 53/49/47/45                  | 53/49/47/45                      |  |  |
| Расход воздуха (охлаждение)<br>(SH/H/M/L)               | м³/ч            | 450/438/402/360              | 480/450/420/360              | 600/480/420/390              | 600/480/420/390                  |  |  |
| Диам. труб жидкостной линии ВБ<br>(соед. развальцовкой) | мм<br>(дюйм)    | 6,35(1/4)                    | 6,35(1/4)                    | 6,35(1/4)                    | 6,35(1/4)                        |  |  |
| Диам. труб газовой линии ВБ<br>(соед. развальцовкой)    | мм<br>(дюйм)    | 12,7(1/2)                    | 12,7(1/2)                    | 12,7(1/2)                    | 12,7(1/2)                        |  |  |
| Диаметр дренажа                                         | мм              |                              | 2                            | 0                            |                                  |  |  |
| Габаритные размеры ВБ (В × Ш × Г)                       | мм              | 300×790×230                  |                              | 300×900×230                  |                                  |  |  |
| Вес ВБ (нетто)                                          | КГ              | 9                            | )                            | 1                            | 0                                |  |  |
| Электропитание                                          | В/ф/Гц          |                              | 230,                         | 1/50                         |                                  |  |  |
| Макс. потр. ток                                         | Α               |                              |                              | 5                            |                                  |  |  |
| Кабель электропитания                                   | MM <sup>2</sup> | 3x0,75                       |                              |                              |                                  |  |  |

|                                                                 |                 |                              |                               | Хладагент R410A/R32            |                           |                           |  |  |
|-----------------------------------------------------------------|-----------------|------------------------------|-------------------------------|--------------------------------|---------------------------|---------------------------|--|--|
| Внутренний блок                                                 |                 | RPK-1.5FSR(H)M<br>(1,5 л.с.) | RPK-2.0FSRM<br>(1,8-2,0 л.с.) | RPK-2.5FSRM<br>(2,3-2,.5 л.с.) | RPK-3.0FSRM<br>(3,0 л.с.) | RPK-4.0FSRM<br>(4,0 л.с.) |  |  |
| Холодопроизводительность<br>(наружный блок Prime&IVX)           | кВт             | 3,60                         | 5,00                          | 5,60                           | 7,10                      | 10,00                     |  |  |
| Теплопроизводительность<br>(наружный блок Prime&IVX)            | кВт             | 4,0                          | 5,60                          | 6,30                           | 8,00                      | 11,20                     |  |  |
| Холодопроизводительность<br>(наружный блок SetFree)             | кВт             | 4,0                          | 5,20←5.60                     | 6,70←7,10                      | 8,00                      | 11,20                     |  |  |
| Теплопроизводительность<br>(наружный блок SetFree)              | кВт             | 4,8                          | 5,60←6,30                     | 7,50←8,50                      | 9,00                      | 12,50                     |  |  |
| Потребляемая мощность                                           | Вт              |                              |                               | 38                             |                           |                           |  |  |
| Уровень звукового давления (SH/H/M/L)                           | дБ(А)           | 46/40/36/33 40/37/34/31      |                               | 45/42/38/35 47/44/40/35        |                           | 51/48/44/39               |  |  |
| Уровень звуковой мощности<br>(SH/H/M/L)                         | дБ(А)           | 58/54/50/47                  | 55/53/50/47                   | 60/58/54/51                    | 63/60/56/51               | 65/64/60/54               |  |  |
| Расход воздуха (охлаждение)<br>(SH/H/M/L)                       | м³/ч            | 840/660/540/450              | 870/780/660/570               | 1110/990/840/720               | 1200/1050/930/750         | 1380/1200/1050/870        |  |  |
| Диам. труб жидкостной линии ВБ<br>(соед. развальцовкой)         | мм<br>(дюйм)    | 6,35                         | (1/4)                         |                                | 9,52(3/8)                 |                           |  |  |
| Диам. труб газовой линии ВБ<br>(соед. развальцовкой)            | мм<br>(дюйм)    | 12,7                         | (1/2)                         |                                | 15,88(5/8)                |                           |  |  |
| Диаметр дренажа                                                 | ММ              |                              |                               | 20                             |                           |                           |  |  |
| Габаритные размеры ВБ (В $\times$ $\square$ $\times$ $\Gamma$ ) | мм              | 300×90                       | 00×230                        |                                | 300×1100×260              |                           |  |  |
| Вес ВБ (нетто)                                                  | КГ              | 11 14,5 15                   |                               |                                |                           |                           |  |  |
| Электропитание                                                  | В/ф/Гц          |                              |                               | 230/1/50                       |                           |                           |  |  |
| Макс. потр. ток                                                 | Α               |                              |                               | 5                              |                           |                           |  |  |
| Кабель электропитания                                           | MM <sup>2</sup> |                              |                               | 3×0,75                         |                           |                           |  |  |




Упрощенный пульт управления PC-ARH1E





Инфракрасный пульт управления PC-AWR





Многофункциональный пульт управления PC-ARFG2-E



Карта для нескольких арендаторов РС-АМТВ



Ответная часть разъема PCC-1A



Выносной электронный расширительный вентиль EV-1.5N1







внутренние блоки

Кассетные 4-поточные

600×600



# Гибкость монтажа и проектирования

Кассетный блок 600×600 имеет компактный дизайн для идеальной интеграции в подвесные потолки (корпус 570×570 мм). Толщина декоративной панели составляет всего 30мм, при этом полностью открытые жалюзи не выступают за габариты панели. Все внутренние блоки оснащены дренажным насосом с высотой подъема конденсата 850 мм.

# Энергосбережение

Благодаря датчику движения (опция) автоматически оптимизируются параметры воздуха и ограничивается потребление энергии в помещениях, в которых люди находятся не постоянно.

Отслеживая значение температуры воздуха, а также присутствие людей в помещении, регулируется поддерживаемая в помещении температура воздуха (±2°C), скорость вращения вентилятора и направление воздушного потока.

# Низкий уровень шума

Серия мини-кассет RCIM предлагает самые бесшумные внутренние блоки. Блоки имеют 4 скорости вращения вентилятора.

# Непревзойденный уровень комфорта

Вы можете ограничить минимальную температуру воздуха, выходящего из внутреннего блока в режиме охлаждения. Это возможно благодаря применению датчика температуры выходящего воздуха и функции «GENTLE COOL», активация которой доступна с проводного пульта управления PC-ARFG2-E.

# Широкий модельный ряд

Hitachi предлагает четырехпоточные кассетные блоки 600×600, обладающие впечатляющим диапазоном производительности от 0,4 до 2,5 л.с., обеспечивая непревзойденную гибкость проектирования. Вы также можете использовать настройку промежуточных мощностей, чтобы внутренний блок максимально точно удовлетворял потребностям каждого проекта.









GentleCool: STRONG



Настройка функции GENTLE COOL может быть выполнена с проводного пульта управления PC-ARFG2-E либо из CSNET Manager



RCIM-0.4FSRE RCIM-0.6FSRE RCIM-0.8FSRE RCIM-1.0FSRE

RCIM-1.5FSRE RCIM-2.0FSRE RCIM-2.5FSRE



# Кассетные 4-поточные внутренние блоки 600×600

|                                                         |                 |                            |                            | х                          | ладагент R410A/R3          | 32                             |                                |                                |
|---------------------------------------------------------|-----------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------------|--------------------------------|--------------------------------|
| Внутренний блок                                         |                 | RCIM-0.4FSRE<br>(0,4 л.с.) | RCIM-0.6FSRE<br>(0,6 л.с.) | RCIM-0.8FSRE<br>(0,8 л.с.) | RCIM-1.0FSRE<br>(1,0 л.с.) | RCIM-1.5FSRE<br>(1,3←1,5 л.с.) | RCIM-2.0FSRE<br>(1,8←2,0 л.с.) | RCIM-2.5FSRI<br>(2,3←2.5 л.с.) |
| Панель                                                  |                 |                            |                            |                            | P-AP56NAM                  |                                |                                |                                |
| Холодопроизводительность<br>(наружный блок Prime&IVX)   | кВт             | _                          | _                          | 2,00                       | 2,50                       | 3,60                           | 5,00                           | 5,60                           |
| Теплопроизводительность<br>(наружный блок Prime&IVX)    | кВт             | _                          | _                          | 2,20                       | 2,80                       | 4,00                           | 5,60                           | 6,30                           |
| Холодопроизводительность<br>(наружный блок SetFree)     | кВт             | 1,10                       | 1,70                       | 2,20                       | 2,80                       | 3,80←4,00                      | 5,20←5,60                      | 6,70←7,10                      |
| Теплопроизводительность<br>(наружный блок SetFree)      | кВт             | 1,30                       | 1,90                       | 2,50                       | 3,20                       | 4,20←4,80                      | 5,60←6,30                      | 7,50←8,50                      |
| Потребляемая мощность                                   | Вт              | 57                         |                            |                            |                            |                                |                                |                                |
| Уровень звукового давления<br>(SH/H/M/L)                | дБ(А)           | 29/27/25/24,5              | 34/30/28/24,5              | 36/33/29/24,5              | 38/34/30/24,5              | 41/37/33/27,5                  | 45/39/35/31                    | 47/43/39/35                    |
| Уровень звуковой мощности                               | дБ(А)           | 43                         | 47                         | 50                         | 51                         | 54                             | 56                             | 60                             |
| Расход воздуха (охлаждение)<br>(SH/H/M/L)               | м³/ч            | 510/468/<br>414/360        | 600/510/<br>450/360        | 660/570/<br>480/360        | 720/600/<br>510/360        | 780/660/<br>570/420            | 900/720/<br>600/480            | 960/840/<br>720/600            |
| Напор насоса отвода конденсата                          | мм              |                            |                            |                            | 850                        |                                |                                |                                |
| Диам. труб жидкостной линии<br>ВБ (соед. развальцовкой) | мм<br>(дюйм)    |                            |                            | 6,35                       | (1/4)                      |                                |                                | 9,52(3/8)                      |
| Диам. труб газовой линии ВБ<br>(соед. развальцовкой)    | мм<br>(дюйм)    |                            |                            | 12,7                       | (1/2)                      |                                |                                | 15,88(5/8)                     |
| Диаметр дренажа                                         | ММ              |                            |                            |                            | 32                         |                                |                                |                                |
| Габаритные размеры ВБ (В ×<br>Ш × Г)                    | ММ              |                            |                            |                            | 285×570×570                |                                |                                |                                |
| Габаритные размеры панели (В<br>× Ш × Г)                | ММ              |                            |                            |                            | 30×620×6200                |                                |                                |                                |
| Вес ВБ + панели (нетто)                                 | КГ              |                            |                            | 16+2,50                    |                            |                                | 17+                            | 2,50                           |
| Электропитание                                          | В/ф/Гц          |                            |                            |                            | 230/1/50                   |                                |                                |                                |
| Макс. потр. ток                                         | Α               |                            |                            |                            | 5                          |                                |                                |                                |
| Кабель электропитания                                   | MM <sup>2</sup> |                            |                            |                            | 3×0,75                     |                                |                                |                                |
|                                                         |                 |                            |                            |                            |                            |                                |                                |                                |





Упрощенный пульт управления PC-ARH1E



Выносной датчик температуры THM-R2AE



Инфракрасный пульт управления PC-AWR



Приемник ИК-сигнала PC-ALHZ1 (внешний)



Многофункциональный пульт управления PC-ARFG2-E



Датчик движения SOR-NEC



Ответная часть разъема PCC-1A \_

# Кассетные 4-поточные высокоэффективные внутренние блоки 800×800







127

Полупромышленные и мультизональные системы кондиционирования





# Дизайн, который идеально вписывается в любое пространство

Разработан таким образом, чтобы гармонировать с помещением — воздуховыпускные жалюзи схожи по форме с ребрами воздухозаборной решетки, а лопасти вентилятора затемнены, чтобы завершить дискретный внешний вид.



# Простая очистка фильтра

Декоративная панель с механизмом подъема решетки облегчает очистку фильтра. Высота опускания решетки может достигать 4 м. Внутренние блоки с декоративной панелью Silent-Iconic может устанавливаться в помещениях с большой высокой потолков.



# Простота в использовании

Конструкция жалюзи декоративной панели и форма воздушного потока усиливают эффект Коанда, что значительно повышает уровень комфорта, позволяя избегать прямого попадания потоков холодного воздуха на пользователя.



# ⊕ Простота монтажа

€=З Сдвигающиеся углы облегчают установку декоративной панели — просто затяните винты.



# Эффект визуального слияния с поверхностью

### потолка

Небольшой зазор между декоративной панелью и потолком создает визуальный эффект «легкости» и слияния с потолком.



# Кассетные 4-поточные высокоэффективные внутренние блоки 800×800

















Стандартная белая панель

Стандартная черная панель

Twin Sense белая

# Гибкость монтажа и проектирования

Кассетные блоки 800×800 идеально подходят для подвесных потолков благодаря своей небольшой высоте (248 мм).

Возможна также установка в помещениях с высокими потолками благодаря отличному распределению воздуха, которое могут обеспечить эти блоки (установка до 4,20 м, в зависимости от модели).

Все внутренние блоки оснащены дренажным насосом с высотой подъема конденсата 850 мм.

# Энергосбережение

Благодаря датчику движения (опция) автоматически оптимизируются параметры воздуха и ограничивается потребление энергии в помещениях, в которых люди находятся не постоянно.

Отслеживая значение температуры воздуха, а также присутствие людей в помещении, регулируется поддерживаемая в помещении температура воздуха (±2°C), скорость вращения вентилятора и направление воздушного потока.

# Непревзойденный уровень комфорта

Вы можете ограничить минимальную температуру воздуха, выходящего из внутреннего блока в режиме охлаждения. Это возможно благодаря применению датчика температуры выходящего воздуха и функции «GENTLE COOL», активация которой доступна с проводного пульта управления PC-ARFG2-E.

# Широкий модельный ряд

Hitachi предлагает четырехпоточные кассетные блоки 800×800, обладающие впечатляющим диапазоном производительности от 1,0 до 6,0 л.с., обеспечивая непревзойденную гибкость проектирования. Вы также можете использовать настройку промежуточных мощностей, чтобы внутренний блок максимально точно удовлетворял потребностям каждого проекта.









GentleCool: STRONG

Настройка функции GENTLE COOL может быть выполнена с проводного пульта управления PC-ARFG2-E либо из CSNET Manager

GentleCool: не активна



RCI-1.0FSR1 RCI-1.5FSR1 RCI-2.0FSR1 RCI-2.5FSR1



950 RCI-3.0FSR1 RCI-4.0FSR1 RCI-5.0FSR1 RCI-6.0FSR1



# Кассетные 4-поточные высокоэффективные внутренние блоки 800×800

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                           |                               |                             | Хладагент                     | R410A/R32                 |                           |                           |                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|-------------------------------|-----------------------------|-------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Внутренний блок                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | RCI-1.0FSR1<br>(1,0 л.с.) | RCI-1.5FSR1<br>(1,3-1,5 л.с.) | RCI-2.0FSR1<br>(1,8-2 л.с.) | RCI-2.5FSR1<br>(2,3-2,5 л.с.) | RCI-3.0FSR1<br>(3,0 л.с.) | RCI-4.0FSR1<br>(4,0 л.с.) | RCI-5.0FSR1<br>(5,0 л.с.) | RCI-6.0FSR1<br>(6,0 л.с.) |
| Панель белая / черная / Twin Sense бе.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | пая             |                           |                               | P-N                         | 123NA2 / P-AP160              | OKA3 / P-AP160N           | AE2                       |                           |                           |
| Холодопроизводительность<br>(наружный блок Prime&IVX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | кВт             | 2,50                      | 3,60                          | 5,00                        | 5,60                          | 7,10                      | 10,00                     | 12,50                     | 14,00                     |
| Теплопроизводительность<br>(наружный блок Prime&IVX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | кВт             | 2,80                      | 4,00                          | 5,60                        | 6,30                          | 8,0                       | 11,20                     | 14,00                     | 16,00                     |
| Холодопроизводительность<br>(наружный блок SetFree)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | кВт             | 2,80                      | 3,80←4,00                     | 5,20←5,60                   | 6,70←7,10                     | 8,00                      | 11,20                     | 14,00                     | 16,00                     |
| Теплопроизводительность<br>(наружный блок SetFree)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | кВт             | 3,20                      | 4,20←4,80                     | 5,60←6,30                   | 7,50←8,50                     | 9,00                      | 12,50                     | 16,00                     | 18,00                     |
| Потребляемая мощность                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Вт              |                           |                               | 57                          |                               |                           |                           | 127                       |                           |
| Уровень звукового давления (SH/H/M/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | дБ(А)           | 33/30/28/27               | 35/31/30/27                   | 37/32/30/27                 | 42/36/32/28                   | 42/36/32/28               | 48/43/39/33               | 48/45/40/35               | 48/46/41/37               |
| Уровень звуковой мощности                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | дБ(А)           | 52                        | 53                            | 55                          | 56                            | 57                        | 64                        |                           | 65                        |
| Расход воздуха (охлаждение) (SH/H/M/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | м³/ч            | 900/780/<br>660/540       | 1260/1020/<br>840/660         | 1320/1020/<br>840/660       | 1620/1380/<br>1080/840        | 1620/1380/<br>1080/840    | 2220/1860/<br>1440/1200   | 2220/1980/<br>1560/1260   | 2220/2100/<br>1680/1320   |
| Напор насоса отвода конденсата                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ММ              |                           |                               |                             | 8                             | 50                        |                           |                           |                           |
| Диам. труб жидкостной линии ВБ (соед. развальцовкой)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | мм<br>(дюйм)    |                           | 6,35(1/4)                     |                             |                               |                           | 9,52(3/8)                 |                           |                           |
| Диам. труб газовой линии ВБ (соед. развальцовкой)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | мм<br>(дюйм)    |                           | 12,7(1/2)                     |                             |                               |                           | 15,88(5/8)                |                           |                           |
| Диаметр дренажа                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ММ              |                           |                               |                             | 3                             | 32                        |                           |                           |                           |
| Габаритные размеры ВБ (В $\times$ $\square$ $\times$ $\Gamma$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ММ              |                           |                               | 248×840×840                 |                               |                           |                           | 298×840×840               |                           |
| Габаритные размеры панели (В $	imes$ | ММ              |                           |                               |                             | 40×95                         | 60×950                    |                           |                           |                           |
| Вес ВБ + панели (нетто)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | КГ              | 20+6,50                   | 21+6,50                       |                             | 22+6,50                       |                           |                           | 26+6,50                   |                           |
| Электропитание                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В/ф/Гц          |                           |                               |                             | 230/                          | 1/50                      |                           |                           |                           |
| Макс. потр. ток                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Α               |                           |                               |                             |                               | 5                         |                           |                           |                           |
| Кабель электропитания                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MM <sup>2</sup> |                           |                               |                             | 3×0                           | ),75                      |                           |                           |                           |

# Декоративная панель Silent-Iconic



# Декоративная панель Twin Sense

Отличие от стандартных декоративных панелей заключается в наличии двух отдельных датчиков:

- 1. Четыре датчика обнаружения движения человека
- 2. Один датчик температуры излучения Эти компоненты позволяют панели Twin-Sense определять уровень активности в помещении и измерять температуру излучения по всему пространству, в том числе от таких поверхностей, как пол или столы. Такой интеллектуальный анализ позволяет панели точно настраивать температуру в помещении, обеспечивая комфорт для пользователей.

### Функции:

- Функция CrowdSense
- Функция охлаждения FloorSense
- Функция подогрева ног
- Индивидуальное управление для каждой заслонки жалюзи
- Точный угол обдува под углом 15° для предотвращения прямых сквозняков.
- Эксклюзивная технология GentleCool
- Выбор прямого / непрямого воздушного потока
- Функция автоматического сохранения: сенсор определяет наличие людей и при отсутствии активности в течение определенного периода кондиционер автоматически отключается.



Упрощенный пульт управления PC-ARH1E



Выносной датчик температуры THM-R2AE



Инфракрасный пульт управления PC-AWR



Приемник ИК-сигнала PC-ALHZ1 (внешний)



Многофункциональный пульт управления PC-ARFG2-E



Датчик движения SOR-NEC



Ответная часть разъема PCC-1A

131

Кассетные внутренние блоки 2-поточные











# Гибкость монтажа и проектирования

Двухпоточные кассетные блоки - идеальное решение для больших прямоугольных помещений.

Они удобны в монтаже благодаря малому весу (вес малого блока всего 23 кг).

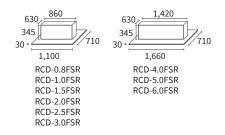
Все внутренние блоки оснащены дренажным насосом с высотой подъема конденсата 850 мм.

### Энергосбережение

Благодаря датчику движения (опция) автоматически оптимизируются параметры воздуха и ограничивается потребление энергии в помещениях, в которых люди находятся не постоянно.

Отслеживая значение температуры воздуха, а также присутствие людей в помещении, регулируется поддерживаемая в помещении температура воздуха (±2°C), скорость вращения вентилятора и направление воздушного потока.

# Непревзойденный уровень комфорта


Вы можете ограничить минимальную температуру воздуха, выходящего из внутреннего блока в режиме охлаждения. Это возможно благодаря применению датчика температуры выходящего воздуха и функции «GENTLE COOL», активация которой доступна с проводного пульта управления PC-ARFG2-E.

# Широкий модельный ряд

Hitachi предлагает двухпоточные кассетные блоки, обладающие широким диапазоном производительности от 0,8 до 6,0 л.с., обеспечивая непревзойденную гибкость проектирования.

Вы также можете использовать настройку промежуточных мощностей, чтобы внутренний блок максимально точно удовлетворял потребностям каждого проекта.







# Кассетные внутренние блоки 2-поточные

|                                                         |                 |                          |                          |                              | Хла                        | <br>адагент R410A/           | R32                      |                          |                          |                          |
|---------------------------------------------------------|-----------------|--------------------------|--------------------------|------------------------------|----------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Внутренний блок                                         |                 | RCD-0.8FSR<br>(0,8 л.с.) | RCD-1.0FSR<br>(1,0 л.с.) | RCD-1.5FSR<br>(1,3-1,5 л.с.) | RCD-2.0FSR<br>(1,8-2 л.с.) | RCD-2.5FSR<br>(2,3-2,5 л.с.) | RCD-3.0FSR<br>(3,0 л.с.) | RCD-4.0FSR<br>(4,0 л.с.) | RCD-5.0FSR<br>(5,0 л.с.) | RCD-6.0FSR<br>(6,0 л.с.) |
| Панель                                                  |                 |                          |                          | P-APS                        | ODNA                       |                              |                          |                          | P-AP160DNA               |                          |
| Холодопроизводительность<br>(наружный блок Prime&IVX)   | кВт             | 2,00                     | 2,50                     | 3,60                         | 5,00                       | 5,60                         | 7,10                     | 10,00                    | 12,50                    | 14,00                    |
| Теплопроизводительность<br>(наружный блок Prime&IVX)    | кВт             | 2,20                     | 2,80                     | 4,00                         | 5,60                       | 6,3                          | 8,00                     | 11,20                    | 14,00                    | 16,00                    |
| Холодопроизводительность<br>(наружный блок SetFree)     | кВт             | 2,20                     | 2,80                     | 3,80←4,00                    | 5,20←5,60                  | 6,70←7,10                    | 8,00                     | 11,20                    | 14,00                    | 16,00                    |
| Теплопроизводительность<br>(наружный блок SetFree)      | кВт             | 2,50                     | 3,20                     | 4,20←4,80                    | 5,60←6,30                  | 7,50←8,50                    | 9,00                     | 12,50                    | 16,00                    | 18,00                    |
| Потребляемая мощность                                   | Вт              | 57                       |                          |                              |                            |                              |                          | 57x2                     |                          |                          |
| Уровень звукового давления (SH/H/M/L)                   | дБ(А)           | 30/29/28/27              | 31/29/28/27              | 37/34/31/30                  | 39/36/33/30                | 42/39/36/33                  | 45/42/38/33              | 43/40/37/34              | 47/44/41/35              | 48/45/42/38              |
| Уровень звуковой мощности<br>(SH/H/M/L)                 | дБ(А)           | 45/44/43/42              | 48/46/45/44              | 51/49/47/46                  | 52/51/49/47                | 55/52/51/49                  | 58/55/52/49              | 57/55/52/50              | 60/55/52/50              | 61/59/56/53              |
| Расход воздуха (охлаждение)<br>(SH/H/M/L)               | м³/ч            | 600/540/<br>450/390      | 660/570/<br>510/420      | 900/780/<br>690/600          | 990/870/<br>750/630        | 1100/990/<br>870/750         | 1260/1100/<br>960/750    | 1800/1590/<br>1380/1200  | 2100/1860/<br>1620/1260  | 2220/1950/<br>1710/1440  |
| Напор насоса отвода конденсата                          | ММ              |                          |                          |                              |                            | 850                          |                          |                          |                          |                          |
| Диам. труб жидкостной линии ВБ<br>(соед. развальцовкой) | мм<br>(дюйм)    |                          | 6,35                     | (1/4)                        |                            |                              |                          | 9,52(3/8)                |                          |                          |
| Диам. труб газовой линии ВБ<br>(соед. развальцовкой)    | мм<br>(дюйм)    |                          | 12,7                     | (1/2)                        |                            |                              |                          | 15,88(5/8)               |                          |                          |
| Диаметр дренажа                                         | ММ              |                          |                          |                              |                            | 32                           |                          |                          |                          |                          |
| Габаритные размеры ВБ (В $\times$ Ш $\times$ Г)         | ММ              |                          |                          | 345×86                       | 60×360                     |                              |                          | :                        | 345×1420×630             | 0                        |
| Габаритные размеры панели (В<br>× Ш × Г)                | ММ              | 30×1100×710              |                          |                              |                            |                              |                          |                          | 30×1660×710              |                          |
| Вес ВБ + панели (нетто)                                 | КГ              | 23+7,50 25               |                          |                              |                            | 7,50                         |                          |                          | 39+10,50                 |                          |
| Электропитание                                          | В/ф/Гц          | 230/1/50                 |                          |                              |                            |                              |                          |                          |                          |                          |
| Макс. потр. ток                                         | А               |                          |                          |                              |                            | 5                            |                          |                          |                          |                          |
| Кабель электропитания                                   | MM <sup>2</sup> |                          |                          |                              |                            | 3×0,75                       |                          |                          |                          |                          |





Упрощенный пульт управления PC-ARH1E



Выносной датчик температуры THM-R2AE



Инфракрасный пульт управления PC-AWR



Приемник ИК-сигнала PC-ALHZ1 (внешний)



Многофункциональный пульт управления PC-ARFG2-E



Датчик движения SOR-NEC



Ответная часть разъема РСС-1А

133

# Подпотолочные внутренние блоки высокоэффективные













### Широкие рабочие диапазоны

4 скорости вращения вентилятора для удовлетворения любых потребностей, обеспечения комфорта и экономии.

# Гибкость монтажа и проектирования

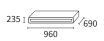
Подпотолочные блоки — идеальное решение для помещений вытянутой формы с высокими потол-ками до  $4,3\,\mathrm{M}$ .

### Широкий модельный ряд

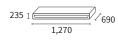
Hitachi предлагает подпотолочные внутренние блоки с диапазоном производительности от 1,5 до 6,0 л.с., обеспечивая гибкость проектирования.

Вы также можете использовать настройку промежуточных мощностей, чтобы внутренний блок максимально точно удовлетворял потребностям каждого проекта.

### Энергосбережение


Благодаря датчику движения (опция) автоматически оптимизируются параметры воздуха и ограничивается потребление энергии в помещениях, в которых люди находятся не постоянно.

Отслеживая значение температуры воздуха, а также присутствие людей в помещении, регулируется поддерживаемая в помещении температура воздуха (±2°С), скорость вращения вентилятора и направление воздушного потока.


# Непревзойденный уровень комфорта

Вы можете ограничить минимальную температуру воздуха, выходящего из внутреннего блока в режиме охлаждения. Это возможно благодаря применению датчика температуры выходящего воздуха и функции «GENTLE COOL», активация которой доступна с проводного пульта управления PC-ARFG2-E.









RPC-2.5FSR RPC-3.0FSR





# Подпотолочные внутренние блоки высокоэффективные

|                                                         |                 |                              |                              | х                            | ладагент R410A/R3        | 32                       |                          |                          |
|---------------------------------------------------------|-----------------|------------------------------|------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Внутренний блок                                         |                 | RPC-1.5FSR<br>(1,3←1,5 л.с.) | RPC-2.0FSR<br>(1,8←2,0 л.с.) | RPC-2.5FSR<br>(2,3←2,5 л.с.) | RPC-3.0FSR<br>(3,0 л.с.) | RPC-4.0FSR<br>(4,0 л.с.) | RPC-5.0FSR<br>(5,0 л.с.) | RPC-6.0FSR<br>(6,0 л.с.) |
| Холодопроизводительность<br>(наружный блок Prime&IVX)   | кВт             | 3,60                         | 5,00                         | 5,60                         | 7,10                     | 10,00                    | 12,50                    | 14,00                    |
| Теплопроизводительность<br>(наружный блок Prime&IVX)    | кВт             | 4,00                         | 5,60                         | 6,30                         | 8,00                     | 11,20                    | 14,00                    | 16,00                    |
| Холодопроизводительность<br>(наружный блок SetFree)     | кВт             | 3,80←4,00                    | 5,20←5,60                    | 6,70←7,10                    | 8,00                     | 11,20                    | 14,00                    | 16,00                    |
| Теплопроизводительность<br>(наружный блок SetFree)      | кВт             | 4,20←4,80                    | 5,60←6,30                    | 7,50 ← 8,50                  | 9,00                     | 12,50                    | 16,00                    | 18,00                    |
| Потребляемая мощность                                   | Вт              | 50                           | 50                           | 80                           | 80                       | 160                      | 160                      | 160                      |
| Уровень звукового давления<br>(SH/H/M/L)                | дБ(А)           | 37/35/31/28                  | 38/35/31/28                  | 38/35/31/28                  | 40/37/33/29              | 44/42/37/32              | 48/45/41/35              | 49/47/42/36              |
| Уровень звуковой мощности<br>(SH/H/M/L)                 | дБ(А)           | 53/50/46/43                  | 54/50/46/43                  | 54/50/47/44                  | 56/52/48/44              | 60/57/52/47              | 64/60/56/50              | 65/62/57/51              |
| Расход воздуха (охлаждение)<br>(SH/H/M/L)               | м³/ч            | 900/780/<br>660/540          | 900/780/<br>660/540          | 1140/990/<br>840/690         | 1260/1110/<br>930/750    | 1800/1590/<br>1320/1020  | 2100/1860/<br>1530/1200  | 2220/1950/<br>1620/1260  |
| Напор насоса отвода конденсата                          | ММ              |                              |                              |                              | 600                      |                          |                          |                          |
| Диам. труб жидкостной линии ВБ<br>(соед. развальцовкой) | мм<br>(дюйм)    | 6,                           | 35(1/4)                      |                              |                          | 9,52(3/8)                |                          |                          |
| Диам. труб газовой линии ВБ<br>(соед. развальцовкой)    | мм<br>(дюйм)    | 12,7(1/2)                    |                              |                              | 15,88                    | 3(5/8)                   |                          |                          |
| Диаметр дренажа                                         | ММ              |                              |                              |                              | 32                       |                          |                          |                          |
| Габаритные размеры ВБ (В×Ш<br>×Г)                       | ММ              | 235×960×690                  | 235×12                       | 270×690                      |                          | 235×15                   | 580×690                  |                          |
| Вес ВБ (нетто)                                          | КГ              | 26                           | 26 27 35 41                  |                              |                          |                          | 1                        |                          |
| Электропитание                                          | В/ф/Гц          |                              |                              |                              | 230/1/50                 |                          |                          |                          |
| Макс. потр. ток                                         | Α               |                              |                              |                              | 5                        |                          |                          |                          |
| Кабель электропитания                                   | MM <sup>2</sup> |                              |                              |                              | 3×0,75                   |                          |                          |                          |



Упрощенный пульт управления PC-ARH1E



Выносной датчик температуры THM-R2AE



Инфракрасный пульт управления PC-AWR



Приемник ИК-сигнала PC-ALHZ1 (внешний)



Многофункциональный пульт управления PC-ARFG2-E



Датчик движения SOR-NEC



Ответная часть разъема PCC-1A

# Полупромышленные и мультизональные системы кондиционирования

# Канальные укороченные внутренние блоки









R4104









# Непревзойденный уровень комфорта

Вы можете ограничить минимальную температуру воздуха, выходящего из внутреннего блока в режиме охлаждения. Это возможно благодаря применению датчика температуры выходящего воздуха и функции «GENTLE COOL», активация которой доступна с проводного пульта управления PC-ARFG2-E.

### Гибкость монтажа и проектирования

RPIL-1.5FSR1E

Подключение труб хладагента и дренажного трубопровода к канальным внутренним блокам серии RPIL осуществляется сзади. Электробокс может быть снят с блока и смонтирован на стене (для внутренних блоков производительностью до 2HP). Эти особенности позволяют монтировать внутренние блоки в ограниченных пространствах. Наиболее гибкая установка для самых маленьких помещений.

Все внутренние блоки оснащены дренажным насосом с высотой подъема конденсата 850мм

# Простота обслуживания

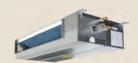
Во внутренних блоках производительностью от 0,4 до 6 л.с. возможно извлечение воздушного фильтра снизу и сбоку без снятия воздуховодов.

### Подача свежего воздуха


Все канальные внутренние блоки Hitachi могут работать с 30% подмесом приточного воздуха обеспечивая качество и чистоту воздуха в помещении. Так же доступны серия внутренних блоков RPI-FSN6E-EF, разработанная специально для подключения комплекта для подачи свежего воздуха Econofresh.

Совместимость с R410A и R32

Канальные внутренние блоки RPI(L/H)-FSRE можно использовать в составе систем, использующих хладагенты R410A и R32.


# Широкий модельный ряд

Нітосні предлагает канальные блоки, обладающие широким диапазоном производительности от 0,4 до 20,0 л.с. и напорностью вентилятора от 100 до 220 Па, обеспечивая непревзойденную гибкость проектирования. Вы также можете использовать настройку промежуточных мощностей, чтобы внутренний блок максимально точно удовлетворял потребностям каждого проекта.



RPI-5.0FSN6E-EF RPI-6.0FSN6E-EF





### Производительность 0,8-3,0 кВт ESP 50 Πa

- Высота 192 мм
- Статическое давление: 50 Па (1,8 – 2,5 л.с.), 30 Па (0,8 - 1,5 л.с.)
- Насос с подъемом 900 мм (опционально)
- Уровень шума 20 дБ(А).
- Скорость вращения вентилятора: доступно 6 ступеней.



Производительность 1,1-4,0 кВт ESP 100 Πa

- Высота 197 мм.
- Ширина 750 мм.
- Доступ к фильтру снизу или сбоку.
- Подключение труб хладагента и дренажа сзади.
- Возможность снятия электробокса с блока и установка его на - Встроенный дренажстене.
- Отвод конденсата за счет встроенного дренажного насоса, с возможностью его отключения и отведением конденсата самотеком.



### Производительность 4,0-16,0 кВт ESP 150 Πa

- Высота 240 мм.
- Ширина 750-1474 мм. Ширина 1474 мм.
- Доступ к фильтру снизу или сбоку.
- электробокса с блока и установка его на стене (модели 4,0 и 5,0 кВт).
- ный насос.
- Специальные модели, совместимые с Econofresh (RPI-FSN6E-EF).



### Производительность 11,0-16,0 кВт ESP 200 ∏a

- Высота 340 мм.
- Доступ к фильтру снизу или сбоку.
- Возможность снятия Встроенный дренажный насос.



Производительность 22,0-56,0 кВт ESP 220∏a

- Высота 423 мм (8 10 л.с.), 846 мм (16 – 20 л.с.).
- Ширина 1592 мм.
- Доступны версии с огнестойкой изоляцией.

### Канальные компактные внутренние блоки

|                                                       |                 |                                   |                                   |                                   | ХЛАДАГЕ                           | HT R410A                          |                                   |                                   |                                   |
|-------------------------------------------------------|-----------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Внутренний блок                                       |                 | RPIZ-<br>0.8HNDTS1Q<br>(0.8 л.с.) | RPIZ-<br>1.0HNDTS1Q<br>(1.0 л.с.) | RPIZ-<br>1.3HNDTS1Q<br>(1.3 л.с.) | RPIZ-<br>1.5HNDTS1Q<br>(1.5 л.с.) | RPIZ-<br>1.8HNDTS1Q<br>(1.8 л.с.) | RPIZ-<br>2.0HNDTS1Q<br>(2.0 л.с.) | RPIZ-<br>2.3HNDTS1Q<br>(2.5 л.с.) | RPIZ-<br>2.5HNDTS1Q<br>(3.0 л.с.) |
| Холодопроизводительность<br>(наружный блок Prime&IVX) | кВт             | 2,2                               | 2,8                               | 3,6                               | 4,0                               | 5,0                               | 5,6                               | 6,3                               | 7,1                               |
| Теплопроизводительность<br>(наружный блок Prime&IVX)  | кВт             | 2,5                               | 3,2                               | 3,8                               | 4,2                               | 5,6                               | 6,3                               | 7,1                               | 8,0                               |
| Потребляемая мощность                                 | Вт              | 40                                | 40                                | 40                                | 30                                | 60                                | 60                                | 60                                | 60                                |
| Уровень звукового давления (SH/H/M/L)                 | дБа             | 32/30/29/27<br>/25/24             | 33/31/28/25/<br>23.5/22.5         | 33/31/28/25/<br>23.5/22.5         | 31/30/28/25/<br>22/20             | 36/33.5/31/<br>28/24.5/22.5       | 36/33.5/31/<br>28/24.5/22.5       | 37/36/33/<br>30/28/25             | 37/36/33/30/<br>28/25             |
| Расход воздуха (охлаждение)<br>(H/M/L)                | м³/ч            | 420/342/270                       | 510/360/300                       | 510/360/300                       | 600/450/360                       | 870/708/480                       | 870/708/480                       | 990/780/540                       | 990/780/540                       |
| Внешнее статическое давление<br>(мин-макс.)           | Па              | 10 (0-30)                         |                                   |                                   |                                   |                                   |                                   |                                   |                                   |
| Диам. труб жидкостной линии                           | мм<br>(дюйм)    | 6.35(1/4)                         | 6.35(1/4)                         | 6.35(1/4)                         | 6.35(1/4)                         | 9.52(3/8)                         | 9.52(3/8)                         | 9.52(3/8)                         | 9.52(3/8)                         |
| Диам. труб газовой линии                              | мм<br>(дюйм)    | 12.7(1/2)                         | 12.7(1/2)                         | 12.7(1/2)                         | 12.7(1/2)                         | 15.88(5/8)                        | 15.88(5/8)                        | 15.88(5/8)                        | 15.88(5/8)                        |
| Напор насоса отвода конденсата                        | ММ              |                                   |                                   |                                   | 9                                 | 00                                |                                   |                                   |                                   |
| Диаметр дренажа                                       | ММ              |                                   |                                   |                                   |                                   | 25                                |                                   |                                   |                                   |
| Габаритные размеры (В×Ш×Г)                            | ММ              | 192x700x447                       | 192x700x447                       | 192x700x447                       | 192x910x447                       | 192x1180x447                      | 192x1180x447                      | 192x1180x447                      | 192x1180x447                      |
| Вес (нетто)                                           | КГ              | 17                                | 17                                | 17                                | 20                                | 25                                | 25                                | 25                                | 25                                |
| Макс. потр. ток                                       | Α               | 5                                 |                                   |                                   | 5                                 |                                   |                                   |                                   |                                   |
| Кабель электропитания                                 | MM <sup>2</sup> |                                   |                                   |                                   | 2x                                | 2,5                               |                                   |                                   |                                   |
| Электропитание                                        | В/ф/Гц          | 230B/1/50                         |                                   |                                   |                                   |                                   |                                   |                                   |                                   |

# (137

# Канальные укороченные внутренние блоки

|                                                         |                 |                             |                             | Хладагент R410A/R32         |                             |                                 |  |  |  |
|---------------------------------------------------------|-----------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------------|--|--|--|
| Внутренний блок                                         |                 | RPIL-0.4FSR1E<br>(0,4 л.с.) | RPIL-0.6FSR1E<br>(0,6 л.с.) | RPIL-0.8FSR1E<br>(0,8 л.с.) | RPIL-1.0FSR1E<br>(1,0 л.с.) | RPIL-1.5FSR1E<br>(1,3-1,5 л.с.) |  |  |  |
| Холодопроизводительность<br>(наружный блок Prime&IVX)   | кВт             | _                           | _                           | 2,00                        | 2,50                        | 3,60                            |  |  |  |
| Теплопроизводительность<br>(наружный блок Prime&IVX)    | кВт             | _                           | _                           | 2,20                        | 2,80                        | 4,0                             |  |  |  |
| Холодопроизводительность<br>(наружный блок SetFree)     | кВт             | 1,10                        | 1,10 1,70 2,20 2,80         |                             | 3,80←4,00                   |                                 |  |  |  |
| Теплопроизводительность<br>(наружный блок SetFree)      | кВт             | 1,30                        | 1,30 1,90 2,50 3,20         |                             | 4,20←4,80                   |                                 |  |  |  |
| Потребляемая мощность                                   | Вт              |                             | 20                          |                             | 3                           | 0                               |  |  |  |
| Внешнее статическое давление<br>(мин-макс.)             | Па              | 15(0-100) 25(0-100)         |                             |                             |                             |                                 |  |  |  |
| Уровень звукового давления<br>(H/M/L)                   | дБ(А)           | 24/23/22                    | 27/25/23                    | 28/25/23                    |                             | 30/28/25                        |  |  |  |
| Уровень звуковой мощности                               | дБ(А)           | 48                          | 51                          | 52                          |                             | 53                              |  |  |  |
| Расход воздуха (охлаждение)<br>(H/M/L)                  | м³/ч            | 360/330/300                 | 438/390/330                 | 462/39                      | 90/342                      | 528/474/390                     |  |  |  |
| Диам. труб жидкостной линии ВБ<br>(соед. развальцовкой) | мм<br>(дюйм)    |                             |                             | 6,35(1/4)                   |                             |                                 |  |  |  |
| Диам. труб газовой линии ВБ<br>(соед. развальцовкой)    | мм<br>(дюйм)    |                             |                             | 12,7(1/2)                   |                             |                                 |  |  |  |
| Напор насоса отвода конденсата                          | MM              |                             |                             | 850                         |                             |                                 |  |  |  |
| Диаметр дренажа                                         | ММ              |                             |                             | 32                          |                             |                                 |  |  |  |
| Габаритные размеры ВБ (В × Ш × Г)                       | ММ              |                             |                             | 197×750×600                 |                             |                                 |  |  |  |
| Вес ВБ (нетто)                                          | кг              | 23                          |                             |                             |                             |                                 |  |  |  |
| Электропитание                                          | В/ф/Гц          |                             |                             | 230/1/50                    |                             |                                 |  |  |  |
| Макс. потр. ток                                         | Α               |                             |                             | 5                           |                             |                                 |  |  |  |
| Кабель электропитания                                   | MM <sup>2</sup> |                             |                             | 3×0,75                      |                             |                                 |  |  |  |

### Канальные средненапорные внутренние блоки

|                                                         |                 |                            |                            | X.                         | ладагент R410A/R3          | 32                         |                            |                            |
|---------------------------------------------------------|-----------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Внутренний блок                                         |                 | RPI-1.5FSR1E<br>(1,5 л.с.) | RPI-2.0FSR1E<br>(2,0 л.с.) | RPI-2.5FSR1E<br>(2,5 л.с.) | RPI-3.0FSR1E<br>(3,0 л.с.) | RPI-4.0FSR1E<br>(4,0 л.с.) | RPI-5.0FSR1E<br>(5,0 л.с.) | RPI-6.0FSR1E<br>(6,0 л.с.) |
| Холодопроизводительность (на-<br>ружный блок Prime&IVX) | кВт             | 3,60                       | 5,00                       | 5,60                       | 7,10                       | 10,00                      | 12,50                      | 14,00                      |
| Теплопроизводительность (на-<br>ружный блок Prime&IVX)  | кВт             | 4,00                       | 5,60                       | 6,30                       | 8,00                       | 11,20                      | 14,00                      | 16,00                      |
| Холодопроизводительность (на-<br>ружный блок SetFree)   | кВт             | 4,00                       | 5,60                       | 7,10                       | 8,00                       | 11,20                      | 14,00                      | 16,00                      |
| Теплопроизводительность (на-<br>ружный блок SetFree)    | кВт             | 4,80                       | 6,30                       | 8,50                       | 9,00                       | 12,50                      | 16,00                      | 18,00                      |
| Потребляемая мощность                                   | Вт              | 40                         | 40                         | 90                         | 100                        | 80                         | 100                        | 110                        |
| Внешнее статическое давление<br>(мин-макс)              | Па              | 25(0-150)                  | 0) 30(0–150)               |                            | 37(0–150)                  |                            | 50(0                       | -150)                      |
| Уровень звукового давления<br>(H/M/L)                   | дБ(А)           | 32/30/29                   | 32/30/29                   | 34/32/30                   | 35/33/31                   | 39/38/35                   | 37/35/32                   | 37.5/35.5/32.5             |
| Уровень звуковой мощности                               | дБ(А)           | 55                         | 58                         | 57                         | 59                         | 62                         | 64                         | 64                         |
| Расход воздуха (охлаждение)<br>(H/M/L)                  | м³/ч            | 900/720/540                | 1020/840/660               | 1380/1200/1020             | 1560/1320/1080             | 2160/1740/1440             | 2400/2130/1860             | 2580/2220/186              |
| Диам. труб жидкостной линии ВБ<br>(соед. развальцовкой) | мм<br>(дюйм)    | 6,35                       | 5(1/4)                     |                            |                            | 9,52(3/8)                  |                            |                            |
| Диам. труб газовой линии ВБ<br>(соед. развальцовкой)    | мм<br>(дюйм)    | 12,7(1/2)                  |                            |                            | 15,8                       | 8(5/8)                     |                            |                            |
| Напор насоса отвода конденсата                          | ММ              |                            |                            |                            | 850                        |                            |                            |                            |
| Диаметр дренажа                                         | ММ              |                            |                            |                            | 32                         |                            |                            |                            |
| Габаритные размеры ВБ (В × Ш × Г)                       | ММ              | 240×7                      | 50×600                     | 240×10                     | 84×600                     |                            | 240x1474×600               |                            |
| Вес внутреннего блока (нетто)                           | КГ              | 2                          | 16                         | 32                         |                            |                            | 42                         |                            |
| Электропитание                                          | В/ф/Гц          | 230/1/50                   |                            |                            |                            |                            |                            |                            |
| Макс. потр. ток                                         | А               |                            |                            |                            | 5                          |                            |                            |                            |
| Кабель электропит                                       | MM <sup>2</sup> |                            | 3×0,75                     |                            |                            |                            |                            |                            |



# Канальные высоконапорные внутренние блоки

| Внутренний блок                                         |                 | Хладагент R410A/R32                  |                             |                             |  |  |
|---------------------------------------------------------|-----------------|--------------------------------------|-----------------------------|-----------------------------|--|--|
|                                                         |                 | RPIH-4.0FSR1E<br>(4,0 л.с.)          | RPIH-5.0FSR1E<br>(5,0 π.c.) | RPIH-6.0FSR1E<br>(6,0 л.с.) |  |  |
| Холодопроизводительность (на-<br>ружный блок Prime&IVX) | кВт             | 10,00                                | 12,50                       | 14,00                       |  |  |
| Теплопроизводительность (на-<br>ружный блок Prime&IVX)  | кВт             | 11,20                                | 14,00                       | 16,00                       |  |  |
| Холодопроизводительность (на-<br>ружный блок SetFree)   | кВт             | 11,20                                | 14,00                       | 16,00                       |  |  |
| Теплопроизводительность (на-<br>ружный блок SetFree)    | кВт             | 12,50                                | 16,00                       | 18,00                       |  |  |
| Потребляемая мощность                                   | Вт              | 80                                   |                             | 100                         |  |  |
| Внешнее статическое давление (мин-макс)                 | Па              |                                      | 155 (0–200)                 |                             |  |  |
| Уровень звукового давления<br>(H/M/L)                   | дБ(А)           | 39/38/35 40/38/36                    |                             |                             |  |  |
| 6Уровень звуковой мощности                              | дБ(А)           | 62                                   |                             |                             |  |  |
| Расход воздуха (охлаждение)<br>(H/M/L)                  | м³/ч            | 2100/1890/1740 2160/2040/1920        |                             |                             |  |  |
| Диам. труб жидкостной линии ВБ (соед. развальцовкой)    | мм<br>(дюйм)    | 9,52(3/8)                            |                             |                             |  |  |
| Диам. труб газовой линии ВБ<br>(соед. развальцовкой)    | мм<br>(дюйм)    | 15,88( <sup>5</sup> / <sub>8</sub> ) |                             |                             |  |  |
| Напор насоса отвода конденсата                          | мм              | 850                                  |                             |                             |  |  |
| Диаметр дренажа                                         | ММ              | 32                                   |                             |                             |  |  |
| Габаритные размеры ВБ<br>(В × Ш × Г)                    | мм              | 340×1474×600                         |                             |                             |  |  |
| Вес внутреннего блока (нетто)                           | КГ              | 44                                   |                             |                             |  |  |
| Электропитание                                          | В/ф/Гц          | 230/1/50                             |                             |                             |  |  |
| Макс. потр. ток                                         | Α               | 5                                    |                             |                             |  |  |
| Кабель электропитания                                   | MM <sup>2</sup> | 3×0,75                               |                             |                             |  |  |

# Канальные высоконапорные внутренние блоки

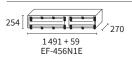
| Внутренний блок                                         |                 | Хладагент R410A                 |                                    |                                    |                                    |  |
|---------------------------------------------------------|-----------------|---------------------------------|------------------------------------|------------------------------------|------------------------------------|--|
|                                                         |                 | RPI-8.0FSN3E (-f)<br>(8,0 л.с.) | RPI-10.0 FSN3E (-f)<br>(10,0 л.с.) | RPI-16.0FSN3PE (-f)<br>(16,0 л.с.) | RPI-20.0FSN3PE (-f)<br>(20,0 л.с.) |  |
| Холодопроизводительность<br>(наружный блок IVX)         | кВт             | 20,00                           | 25,00                              | _                                  | _                                  |  |
| Теплопроизводительность (наружный блок IVX)             | кВт             | 22,40                           | 28,00                              | _                                  | _                                  |  |
| Холодопроизводительность<br>(наружный блок SetFree)     | кВт             | 22,40                           | 28,00                              | 45,00                              | 56,00                              |  |
| Теплопроизводительность<br>(наружный блок SetFree)      | кВт             | 25,00                           | 31,00                              | 50,00                              | 63,00                              |  |
| Потребляемая мощность                                   | Вт              | 10                              | 65                                 | 2×1065                             |                                    |  |
| Внешнее статическое давление<br>(мин-макс)              | Па              |                                 | 180(14                             | 40–220)                            |                                    |  |
| Уровень звукового давления<br>(H/M/L)                   | дБ(А)           | 54/54/51                        | 55/55/52                           | 56/—/53                            | 57/—/54                            |  |
| Уровень звуковой мощности                               | дБ(А)           | 77                              | 78                                 | 79                                 | 80                                 |  |
| Расход воздуха (охлаждение)<br>(H/M/L)                  | м³/ч            | 3960/3960/3570                  | 4500/4500/4056                     | 7920/—/7200                        | 9000/—/8220                        |  |
| Диам. труб жидкостной линии ВБ<br>(соед. развальцовкой) | мм<br>(дюйм)    | 9,52                            | (3/8)                              | 2×9,52(3/8)                        |                                    |  |
| Диам. труб газовой линии ВБ<br>(соед. развальцовкой)    | мм<br>(дюйм)    | 19,05(3/4)                      | 22,2(7/8)                          | 2×19,05(2×3/4)                     | 2×22,22(2×7/8)                     |  |
| Диаметр дренажа                                         | ММ              | 2                               | 5                                  | 2x25                               |                                    |  |
| Габаритные размеры ВБ (В×Ш<br>×Г)                       | ММ              | 432×1592×600                    |                                    | 846×1592×600                       |                                    |  |
| Вес ВБ (нетто)                                          | КГ              | 85                              | 87                                 | 171                                | 175                                |  |
| Электропитание                                          | В/ф/Гц          |                                 | 230B,                              | /1/50                              |                                    |  |
| Макс. потр. ток                                         | Α               | 1                               | 0                                  | 16,2                               | 17,7                               |  |
| Кабель электропитания                                   | MM <sup>2</sup> | 3×2                             | 2,50                               | 2×(3×2,50)                         |                                    |  |

# (139

# Канальные внутренние блоки, подключаемые к Econofresh

|                                                         |                               |                                      | Хладагент R410A               |                               |  |
|---------------------------------------------------------|-------------------------------|--------------------------------------|-------------------------------|-------------------------------|--|
| Внутренний блок                                         | RPI-4.0FSN6E-EF<br>(4,0 π.c.) |                                      | RPI-5.0FSN6E-EF<br>(5,0 л.с.) | RPI-6.0FSN6E-EF<br>(6,0 л.с.) |  |
| Холодопроизводительность<br>(наружный блок Prime&IVX)   | кВт                           | 10,00                                | 12,50                         | 14,00                         |  |
| Теплопроизводительность<br>(наружный блок Prime&IVX)    | кВт                           | 11,20                                | 14,00                         | 16,00                         |  |
| Холодопроизводительность<br>(наружный блок SetFree)     | кВт                           | 11,20                                | 14,00                         | 16,00                         |  |
| Теплопроизводительность<br>(наружный блок SetFree)      | кВт                           | 12,50                                | 16,00                         | 18,00                         |  |
| Потребляемая мощность                                   | Вт                            | 80                                   | 100                           | 110                           |  |
| Внешнее статическое давление<br>(мин-макс)              | Па                            | 37(0-150)                            | 50(                           | (0–150)                       |  |
| Уровень звукового давления<br>(H/M/L)                   | дБ(А)                         | 39/38/35 40/38/36                    |                               |                               |  |
| Уровень звуковой мощности                               | дБ(А)                         | 62                                   |                               | 64                            |  |
| Расход воздуха (охлаждение)<br>(H/M/L)                  | м³/ч                          | 2160/2070/2100                       | 2220/2100/1920 2250/2         |                               |  |
| Диам. труб жидкостной линии ВБ<br>(соед. развальцовкой) | мм<br>(дюйм)                  | 9,52(³/₅)                            |                               |                               |  |
| Диам. труб газовой линии ВБ<br>(соед. развальцовкой)    | мм<br>(дюйм)                  | 15,88( <sup>5</sup> / <sub>8</sub> ) |                               |                               |  |
| Напор насоса отвода конденсата                          | ММ                            | 850                                  |                               |                               |  |
| Диаметр дренажа                                         | ММ                            | 32                                   |                               |                               |  |
| Габаритные размеры ВБ (В×Ш<br>× Г)                      | ММ                            | 240×1474×600                         |                               |                               |  |
| Вес внутреннего блока (нетто)                           | КГ                            | 42                                   |                               |                               |  |
| Электропитание                                          | В/ф/Гц                        | 230/1/50                             |                               |                               |  |
| Макс. потр. ток                                         | Α                             |                                      | 5                             |                               |  |
| Кабель электропитания                                   | MM <sup>2</sup>               |                                      | 3×0,75                        |                               |  |

# Комплект для подачи свежего воздуха ECONOFRESH EF-456N1E




Комплект для подачи свежего воздуха Econofresh способен обеспечить приток до 100% свежего воздуха и с помощью системы клапанов позволяет работать в режиме Free Cooling, если требуемая температура в помещении выше температуры наружного воздуха.

- Подключаетсяк3типоразмерамвнутреннихблоков RPI-4.0FSN6E-EF, RPI-5.0FSN6E-EF, RPI-6.0FSN6E-EF.
- Позволяет осуществлять работу в режиме Free
- Опциональный фильтр тонкой очистки класса F7 (модель HEF-EF456).



### Econofresh





Принцип работы Econofresh





Упрощенный пульт управления PC-ARH1E



Выносной датчик температуры THM-R2AE



Инфракрасный пульт управления PC-AWR



Приемник ИК-сигнала РС-ALHZ1 (внешний)



Многофункциональный пульт управления



Датчик движения SOR-NEC



Ответная часть разъема PCC-1A



# Напольные внутренние блоки









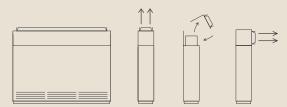
## Непревзойденный уровень комфорта

Вы можете ограничить минимальную температуру воздуха, выходящего из внутреннего блока в режиме охлаждения. Это возможно благодаря применению датчика температуры выходящего воздуха и функции «GENTLE COOL», активация которой доступна с проводного пульта управления PC-ARFG2-E.

### Гибкость монтажа и проектирования

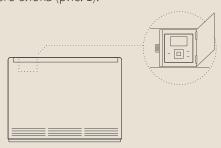
Чтобы удовлетворять требованиям различных проектов, напольные внутренние блоки поставляются в корпусе и без.

Благодаря плоской конструкции (глубина всего 220 мм) данные блоки можно устанавливать в помещение, не загромождая интерьер.


Бескорпусные блоки имеют высоту 620 мм, а корпусные 630 мм, это позволяет устанавливать их под окном на стене или в нише.

# Модельный ряд

Hitachi предлагает напольные внутренние блоки обладающие диапазон производительности от 1,0 до 2,5 л.с., обеспечивая гибкость проектирования. Вы также можете использовать настройку промежуточных мощностей, чтобы внутренний блок максимально точно удовлетворял потребностям каждого проекта.


### Адаптированная циркуляция воздуха

Для бескорпусных блоков возможно изменение направления выпуска воздуха, переустановкой заглушки и фланца.



## Пульт управления

Пульт дистанционного управления PC-ARFG2-E может быть встроен непосредственно в корпус внутреннего блока (рис. 1).















# Напольные внутренние блоки

| Корпусной внутренний блок                               |                 | Хладагент R410A                                                         |           |                                |                                |  |
|---------------------------------------------------------|-----------------|-------------------------------------------------------------------------|-----------|--------------------------------|--------------------------------|--|
|                                                         |                 | RPF-1.0FSN2E       RPF-1.5FSN2E         (1,0 π.c.)       (1,3€1,5 π.c.) |           | RPF-2.0FSN2E<br>(1,8←2,0 л.с.) | RPF-2.5FSN2E<br>(2,3←2,5 л.с.) |  |
| Холодопроизводительность<br>(наружный блок Prime&IVX)   | кВт             | 2,50 3,60                                                               |           | 5,00                           | 5,60                           |  |
| Теплопроизводительность<br>(наружный блок Prime&IVX)    | кВт             | 2,80                                                                    | 4,00      | 5,60                           | 6,30                           |  |
| Холодопроизводительность<br>(наружный блок SetFree)     | кВт             | 2,20←2,80                                                               | 3,80←4,00 | 5,20←5,60                      | 6,70←7,10                      |  |
| Теплопроизводительность<br>(наружный блок SetFree)      | кВт             | 2,50←3,20                                                               | 4,20←4,80 | 5,60←6,30                      | 7,50 ← 8,50                    |  |
| Потребляемая мощность                                   | Вт              | 20                                                                      | 28        | 45                             |                                |  |
| Уровень звукового давления<br>(H/M/L)                   | дБ(А)           | 35/32/29                                                                | 38/35/31  | 39/36/32                       | 42/38/34                       |  |
| Уровень звуковой мощности<br>(H/M/L)                    | дБ(А)           | 57                                                                      |           | 60                             |                                |  |
| Расход воздуха (охлаждение)<br>(H/M/L)                  | м³/ч            | 510/420/360 720/600/540                                                 |           | 960/840/660                    | 960/840/660                    |  |
| Диам. труб жидкостной линии ВБ<br>(соед. развальцовкой) | мм<br>(дюйм)    | 6,35(1/4)                                                               |           |                                | 9,52(3/8)                      |  |
| Диам. труб газовой линии ВБ<br>(соед. развальцовкой)    | мм<br>(дюйм)    | 12,7(1/2) 15,88(5/8)                                                    |           |                                | 8(5/8)                         |  |
| Габаритные размеры ВБ (В × Ш × Г)                       | ММ              | 630×1045x220 630×1170x220 630×1420×220                                  |           |                                | 20×220                         |  |
| Диаметр дренажа                                         | ММ              | 25                                                                      |           |                                |                                |  |
| Вес ВБ (нетто)                                          | КГ              | 25                                                                      | 28        | 33                             | 34                             |  |
| Электропитание                                          | В/ф/Гц          | 230/1/50                                                                |           |                                |                                |  |
| Макс. потр. ток                                         | Α               | 5                                                                       |           |                                |                                |  |
| Кабель электропитания                                   | MM <sup>2</sup> | 3×0,75                                                                  |           |                                |                                |  |

|                                                        |                 | ХЛАДАГЕНТ R410A                     |                                 |                                 |                                 |  |
|--------------------------------------------------------|-----------------|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Безкорпусной внутренний блок                           |                 | RPFI-1.0FSN2E<br>(1,0 л.с.)         | RPFI-1.5FSN2E<br>(1,3←1,5 л.с.) | RPFI-2.0FSN2E<br>(1,8←2,0 л.с.) | RPFI-2.5FSN2E<br>(2,3←2,5 л.с.) |  |
| Холодопроизводительность<br>(наружный блок Prime&IVX)  | кВт             | 2,50                                | 3,60                            | 5,00                            | 5,60                            |  |
| Геплопроизводительность<br>наружный блок Prime&IVX)    | кВт             | 2,80                                | 4,00                            | 5,60                            | 6,30                            |  |
| Колодопроизводительность (на-<br>ружный блок SetFree)  | кВт             | 2,20←2,80                           | 3,80←4,00                       | 5,20←5,60                       | 6,70←7,10                       |  |
| Теплопроизводительность (на-<br>ружный блок SetFree)   | кВт             | 2,50←3,20                           | 4,20←4,80                       | 5,60←6,30                       | 7,50←8,50                       |  |
| Потребляемая мощность                                  | Вт              | 20                                  | 28                              | 45                              |                                 |  |
| Уровень звукового давления<br>(H/M/L)                  | дБ(А)           | 35/32/29                            | 38/35/31                        | 39/36/32                        | 42/38/34                        |  |
| Уровень звуковой мощности<br>(H/M/L)                   | дБ(А)           | 57                                  |                                 | 60                              |                                 |  |
| Расход воздуха (охлаждение)<br>(H/M/L)                 | м³/ч            | 510/420/360 720/600/540 960/840/660 |                                 |                                 | 840/660                         |  |
| Диам. труб жидкостной линии ВБ<br>соед. развальцовкой) | мм<br>(дюйм)    | 6,35(1/4)                           |                                 |                                 | 9,52(3/8)                       |  |
| Диам. труб газовой линии ВБ<br>соед. развальцовкой)    | мм<br>(дюйм)    | 12,7(¹/₂) 15,88(⁵/₅)                |                                 |                                 | 88(5/8)                         |  |
| Габаритные размеры ВБ (В × Ш × Г)                      | ММ              | 620×848×220                         | 620×973×220                     | 620×1                           | 223×220                         |  |
| Диаметр дренажа                                        | ММ              |                                     |                                 | 25                              |                                 |  |
| Вес ВБ (нетто)                                         | КГ              | 19                                  | 23                              | 27                              | 28                              |  |
| Электропитание                                         | В/ф/Гц          |                                     | 23                              | 80/1/50                         |                                 |  |
| Макс. потр. ток                                        | Α               |                                     |                                 | 5                               |                                 |  |
| Кабель электропитания                                  | MM <sup>2</sup> | 3×0,75                              |                                 |                                 |                                 |  |

000

Упрощенный пульт управления PC-ARH1E



Выносной датчик температуры THM-R2AE



Инфракрасный пульт управления PC-AWR



Приемник ИК-сигнала PC-ALHZ1 (внешний)



Многофункциональный пульт управления PC-ARFG2-E



Датчик движения SOR-NEC



Ответная часть разъема PCC-1A



Полупромышленные и мультизональные системы кондиционирования

с возможностью нагрева воды до 45°C



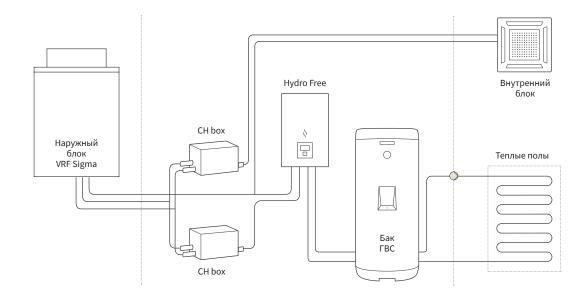






### Варианты применения

Используя внутренние блоки этой серии, можно получать горячую воду для использования ее в теплых полах и фэнкойлах. Обеспечивается максимальный тепловой комфорт благодаря комбинированному решению DX/вода.


### Совместимость

Устройства могут подключаться к наружным блокам серии air365Мax и Set Free mini 8 – 10л.с. При включении внутреннего блока в схему трехтрубной мультизональной системы в теплое время года будет осуществляться рекуперация теплоты в рамках единого холодильного контура.

# Гибкость монтажа и проектирования

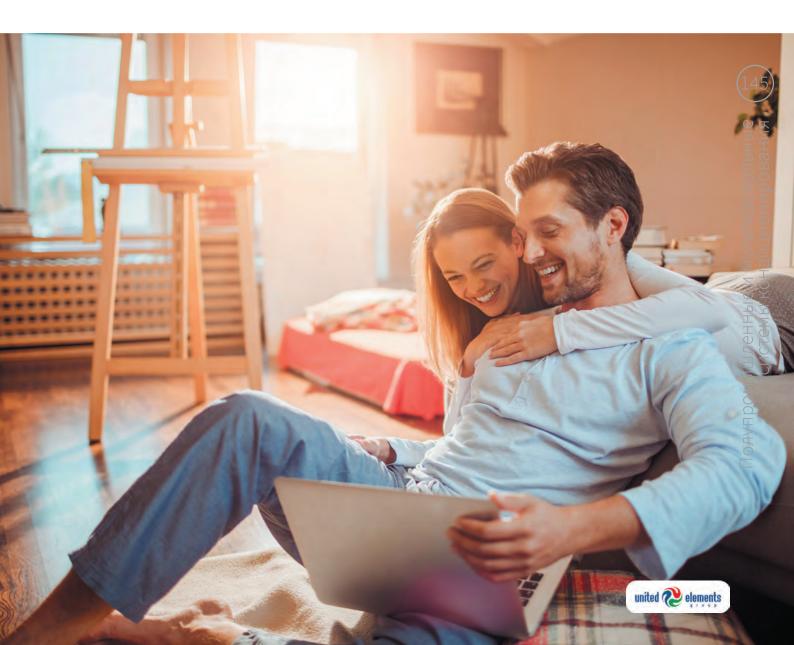
Установка становится очень простой благодаря системе Plug-Play. Модуль имеет все необходимое оборудование в стандартной комплектации: циркуляционный насос, фильтр, расширительный бак, воздухоспускной клапан, манометр.

При реконструкции объектов это решение позволяет сохранить часть существующей гидравлической системы.



Совместим с наружными блоками Set Free: RAS-FSXNS2E, RAS-FSXNP2E и Set Free Mini L (8/10/12 л.с.).

# Hydro Free


| Внутренний блок                                       | RWLT-3.0VN1E | RWLT-5.0VN1E | RWLT-10.0VN1E |             |
|-------------------------------------------------------|--------------|--------------|---------------|-------------|
| Ном. теплопроизводительность (THB: +7 °C; TB: +35 °C  |              | 9            | 16            | 27          |
| Ном. теплопроизводительность (THB: –7 °C; TB: +35 °C) | кВт          | 5,5          | 11,5          | 17,7        |
| Уровень звуковой мощности                             | дБ(А)        | 37           | 39            | 47          |
| Вес нетто                                             | КГ           | 35           | 50            | 62          |
| Габаритные размеры (В $\times$ Ш $\times$ Г)          | ММ           | 712×450×275  | 890×520×360   | 890×670×360 |
| Расход воды мин-ном-макс                              | м³/ч         | 0,8-1,5-2,1  | 1,3-2,7-3.0   | 2,3-4,7     |
| Минимальный объем воды в системе                      | Л            | 100          | 150           | 180         |
| Источник питания                                      | В/ф/А        |              | 230/1/50      |             |
| Потребляемая мощность                                 | Вт           | 45           | 75            | 140         |
| Диаметр труб хладагента (жидкость / газ)              | дюйм         | 3/8 / 5/8    | 3/8 / 5/8     | 3/8 / 7/8   |
| Патрубки гидравлического контура                      | дюйм         | 1            | 11/4          | 11/4        |
| Температура воды на выходе (нагрев)                   | °C           | +20+45       | +20+45        | +20+45      |

### Hydro Free









Внутренний блоки Hydro Free

с возможностью нагрева воды до 80 °C







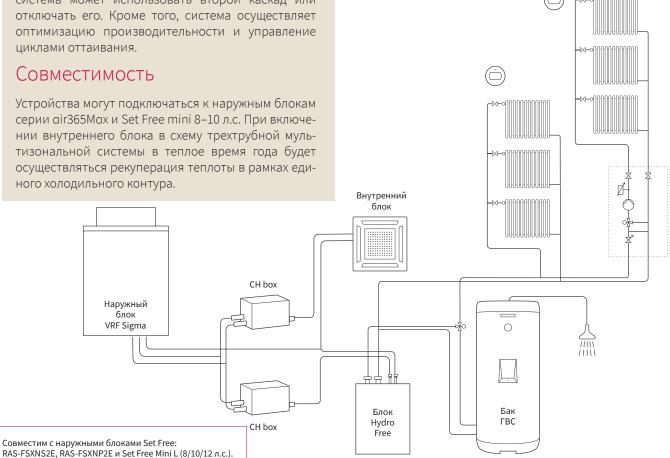




#### Варианты применения

Используя внутренние блоки этой серии, можно получать горячую воду для использования ее в радиаторах. Высокотемпературная система Hydro Free производит горячую воду до 80°C за счет возобновляемых источников энергии

Высокотемпературная система Hydro Free идеально подходит для реконструируемых объектов.

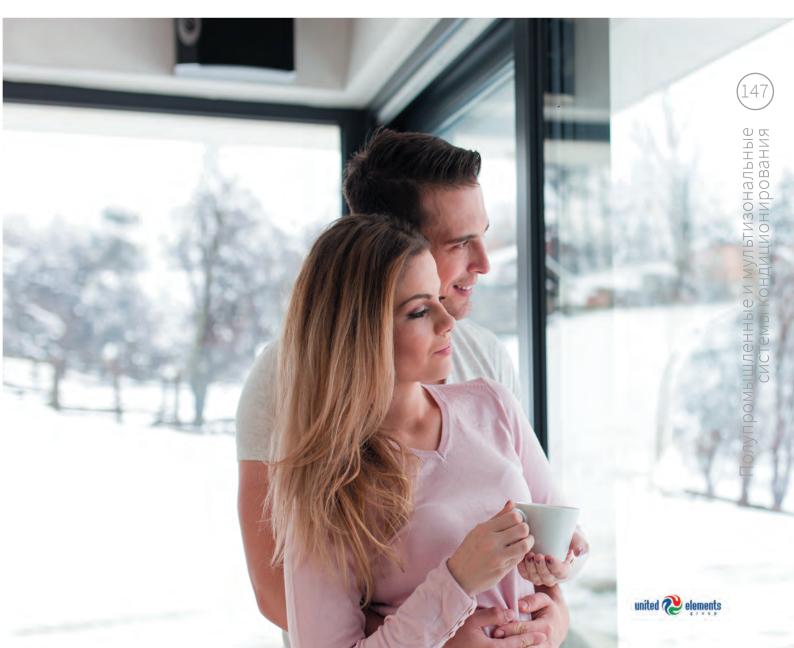

#### Интеллектуальное управление

Внутренние блоки являются каскадными. В каскадах используются холодильные агенты R410A и R134a. В зависимости от температур наружного воздуха система может использовать второй каскад или отключать его. Кроме того, система осуществляет оптимизацию производительности и управление

Устройства могут подключаться к наружным блокам серии air365Max и Set Free mini 8-10 л.с. При включении внутреннего блока в схему трехтрубной мультизональной системы в теплое время года будет осуществляться рекуперация теплоты в рамках единого холодильного контура.

#### Постоянная производительность и температура воды на выходе

Высокотемпературные внутренние блоки Hydro Free обеспечивают максимальный уровень комфорта при любых внешних условиях. Оборудование работает с номинальной производительностью и нагревает воду до +80°C во всем диапазоне рабочих температур по наружному воздуху (без подключения электронагревателя).




# Hydro Free

| Внутренний блок                                       |       | RWHT-5.0VNF1E |
|-------------------------------------------------------|-------|---------------|
| Ном. теплопроизводительность (THB: +7 °C; TB: +35 °C  | кВт   | 16            |
| Ном. теплопроизводительность (THB: -7 °C; TB: +65 °C) | кВт   | 13,9          |
| Ном. теплопроизводительность (THB: -7 °C; TB: +80 °C) | кВт   | 13,9          |
| Уровень звуковой мощности                             | дБ(А) | 57            |
| Вес нетто                                             | КГ    | 129           |
| Габаритные размеры (В $	imes$ Ш $	imes$ Г)            | ММ    | 751×600×623   |
| Расход воды мин-ном-макс                              | м³/ч  | 1,3-2,8-3,2   |
| Минимальный объем воды в системе                      | Л     | 80            |
| Источник питания                                      | -     | 230/1/50      |
| Потребляемая мощность                                 | Вт    | 75            |
| Диаметр труб хладагента (жидкость / газ)              | дюйм  | 3/8/5/8       |
| Патрубки гидравлического контура                      | дюйм  | 11/4          |
| Температура воды на выходе (нагрев)                   | °C    | +20+80        |

#### Hydro Free





# Аксессуары

#### внутренних блоков серии Hydro Free для нагрева воды



#### Смесительный комплект для кон-

Предназначен для регулирования температуры в контуре 2.

- Особенности:
- Компактное решение, теплоизолирован.
- Работает с горячей и холодной водой.
- Контроль температуры воды, на выходе из устройства комплекта

В комплект входят: насос, привод 3-ходового клапана, термодатчик, клапаны.

Версия для настенного монтажа Арт. ATW-2TK-04



#### Предохранительный термостат

При превышении максимальной допустимой температуры на выходе контура в отапливаемой зоне термостат перекрывает циркуляцию воды в контуре.

Apt. ATW-AQT-01



#### Трехходовой клапан

Трехходовой клапан с внутренней резьбой и приводом с пружинным возвратом.

Напряжение питания 220 В.

Используется в системах ГВС или системах обогрева бассейнов



#### Дифференциальный байпасный клапан

Запорный клапан с автоматическим срабатыванием, расходомер 3/4".

Apt. ATW DPOV-01



#### Гидравлический

#### разделитель

Предназначен для гидравлического разделения

- Изготовлен из латуни.
- Четыре стороны подключения и отвода.
- Теплоизоляция в комплекте.

Apt. ATW-HSK-01



#### Внешний бак ГВС

Накопительный бак ГВС из нержавеющей стали на 200 или 300 литров со встроенным электронагревателем 3,0 кВт. Однофазный 230 В, со встроенным датчиком горячей воды.

Арт. DHWT-200S-3.0H2E Apt. DHWT-300S-3.0H2E



#### Проточный нагреватель

- Электронагреватель, мощность 6 кВт одноили трехфазное исполнение
- Три ступени регулирования с шагом 2 кВт.
- Встроенное силовое реле.
- Изолированный корпус из нержавеющей стали.
- Необходимо дооснащение универсальным датчиком температуры ATW-WTS-02Y.

Apt. WEH-6E



#### Датчик температуры воды

Предназначен для второго контура отопления, бака ГВС, контура доп. бойлера или бассейна.

Арт. ATW-WTS-02Y



#### Выносной

#### датчик температуры

Используется для измерения температуры наружного воздуха в месте, удаленном от места установки наружного блока.

Арт. ATW-20S-02

#### Контроллеры и пульты управления



#### Проводной ПУ

Может использоваться в качестве пульта управления совместно с главным контроллером.

Арт. PC-ARFWE





#### Беспроводной ПУ «ON-OFF»

Комплект для двухпозиционного управления системой, состоящий из пульта управления и приемника

Арт. ATW-RTU-04



#### Выносной датчик

температуры воздуха Для настенного монтажа. Измерение температу-

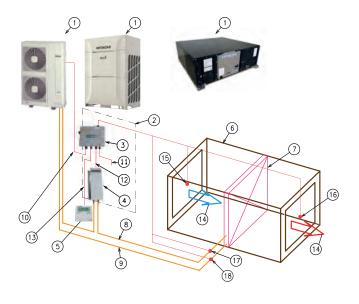
ры воздуха в первой или второй зонах, а также использование в качестве датчика для главного контроллера PC-ARFWE при его парной установке.

Apt. ATW-ITS-01





Блок расширительных вентилей


#### Комплект поставки:

• 4 датчика температуры (ТНМ1: датчик температуры воздуха на входе, ТНМ2: датчик температуры воздуха на выходе, ТНМ3 датчик температуры кипения, ТНМ4: датчик температуры перегретого хладагента)

#### Функции и особенности

DX KIT позволяет использовать наружные блоки HITACHI в качестве компрессорно-конденсаторных блоков (ККБ) при подключении их к испарительным секциям приточных установок, тепловым завесам или другим стандартным внутренним блокам.

- DX KIT имеет степень защиты IP66.
- Поддерживает режимы работы как охлаждение, так и нагрев.
- Комплект DX KIT состоит из 2 модулей: блока расширительных вентилей и блока управления.
- Производительность в режимах охлаждения и нагрева определяется на основе заданной с пульта управления температуры и температуры потока воздуха на выходе.
- Комплект DX KIT имеет различные входы и выходы, обеспечивающие интеграцию оборудования в существующие системы управления. Помимо этого можно использовать также сигналы от наружного блока.
- Широкий диапазон совместимых теплообменников, подключение аппаратов больших внутренних объемов.
- Возможность создавать холодильные станции для обслуживания многоконтурных теплообменных аппаратов (до 5 штук).



#### Описание Наружный блок Hitachi RAS-XH(V)RN(M/S)(1/2)E 2 Комплект DX KIT EXV-(2.0-10.0)E2 3 Блок управления Блок расширительных вентилей 5 Пульт управления Вентиляционный агрегат или внутренний блок стороннего про-6 изводителя с испарителем 7 Теплообменный аппарат(испаритель) 8 Жидкостная линия 9 Газовая линия 10 Межблочная коммуникация 11 Подача питания 12 Линия управления расширительным вентилем 13 Линия связи с пультом управления 14 Приточный воздух 15 Термистор потока воздуха на входе 16 Термистор потока воздуха на выходе 17 Термистор жидкостной линии Термистор газовой линии 18

|     |                                                                          |                                                       |                                                                       | ХЛАДАГЕ                                                                                                                                                                                                                | HT R410A                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|--------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | EXV 2.0E2                                                                | EXV 2.5E2                                             | EXV 3.0E2                                                             | EXV 4.0E2                                                                                                                                                                                                              | EXV 5.0E2                                                                                                                                                                                                                                                                                                                                                                                                                                   | EXV 6.0E2                                                                                                                                                                                                                                                                                                             | EXV 8.0E2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EXV 10.0E2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Наружные блоки IVX ККБ, Set Free mini S, Set Free mini L, Set Free Sigma |                                                       |                                                                       |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| кВт | 5,0<br>(4,0-5,6)                                                         | 6,0<br>(4,8-6,3)                                      | 7,10<br>(5,7–8,0)                                                     | 10,00<br>(8,0-11,2)                                                                                                                                                                                                    | 12,50<br>(10,0-14,0)                                                                                                                                                                                                                                                                                                                                                                                                                        | 14,00<br>(11,2-16,0)                                                                                                                                                                                                                                                                                                  | 20,00<br>(16,0-22,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25,00<br>(20,0–28,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| кВт | 5,6<br>(4,5-7,1)                                                         | 7,0<br>(5,6-7,1)                                      | 8,0<br>(6,4–9,0)                                                      | 11,2<br>(9,0–12,5)                                                                                                                                                                                                     | 14,0<br>(11,2–16,0)                                                                                                                                                                                                                                                                                                                                                                                                                         | 16,0<br>(12,8–18,0)                                                                                                                                                                                                                                                                                                   | 22,4<br>(17,9–25,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28,0<br>(22,4–31,5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| л   | 0,57/1,16                                                                | 0,89/1,35                                             | 1,03/1,57                                                             | 1,51/2,37                                                                                                                                                                                                              | 1,92/2,37                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,92/2,92                                                                                                                                                                                                                                                                                                             | 2,92/3,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,89/4,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| л   | 0,57/1,64                                                                | 0,89/1,83                                             | 1,03/2,89                                                             | 1,51/4,56                                                                                                                                                                                                              | 1,92/4,56                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,92/5,11                                                                                                                                                                                                                                                                                                             | 2,92/6,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,89/10,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | кВт                                                                      | кВт (4,0-5,6)<br>кВт (5,6<br>(4,5-7,1)<br>л 0,57/1,16 | кВт (4,0-5,6) (4,8-6,3) кВт (4,5-7,1) (5,6-7,1) л 0,57/1,16 0,89/1,35 | Наружные блоки IV       кВт     5,0<br>(4,0-5,6)     6,0<br>(4,8-6,3)     7,10<br>(5,7-8,0)       кВт     5,6<br>(4,5-7,1)     7,0<br>(5,6-7,1)     8,0<br>(6,4-9,0)       л     0,57/1,16     0,89/1,35     1,03/1,57 | EXV 2.0E2         EXV 2.5E2         EXV 3.0E2         EXV 4.0E2           Наружные блоки IVX ККБ, Set Free II           кВт         5,0<br>(4,0-5,6)         6,0<br>(4,8-6,3)         7,10<br>(5,7-8,0)         10,00<br>(8,0-11,2)           кВт         5,6<br>(4,5-7,1)         7,0<br>(5,6-7,1)         8,0<br>(6,4-9,0)         11,2<br>(9,0-12,5)           л         0,57/1,16         0,89/1,35         1,03/1,57         1,51/2,37 | Наружные блоки IVX ККБ, Set Free mini S, Set Free n       кВт     5,0 (4,0-5,6)     6,0 (5,7-8,0)     10,00 (8,0-11,2)     12,50 (10,0-14,0)       кВт     5,6 (4,5-7,1)     7,0 (5,6-7,1)     8,0 (1,2 (9,0-12,5)     14,0 (11,2-16,0)       л     0,57/1,16     0,89/1,35     1,03/1,57     1,51/2,37     1,92/2,37 | EXV 2.0E2         EXV 2.5E2         EXV 3.0E2         EXV 4.0E2         EXV 5.0E2         EXV 6.0E2           Наружные блоки IVX ККБ, Set Free mini S, Set Free mini L, Set Free S           кВт         5,0 (4,0-5,6) (4,8-6,3) (5,7-8,0) (8,0-11,2) (10,0-14,0) (11,2-16,0)         14,00 (11,2-16,0) (11,2-16,0)           кВт         5,6 (4,5-7,1) (5,6-7,1) (6,4-9,0) (9,0-12,5) (11,2-16,0) (12,8-18,0)           л         0,57/1,16 (0,89/1,35) (1,03/1,57) (1,51/2,37) (1,92/2,37) (1,92/2,92) | EXV 2.0E2         EXV 2.5E2         EXV 3.0E2         EXV 5.0E2         EXV 6.0E2         EXV 8.0E2           Наружные блоки IVX ККБ, Set Free mini S, Set Free mini L, Set Free Sigma           кВт         5,0 (4,0-5,6) (4,8-6,3) (5,7-8,0) (5,7-8,0) (8,0-11,2) (10,0-14,0) (11,2-16,0) (11,2-16,0) (11,2-16,0) (11,2-16,0) (11,2-16,0) (12,8-18,0)         20,00 (16,0-22,4) (11,2-16,0) (11,2-16,0) (12,8-18,0) (17,9-25,0)           кВт         5,6 (4,5-7,1) (5,6-7,1) (6,4-9,0) (9,0-12,5) (11,2-16,0) (11,2-16,0) (12,8-18,0) (17,9-25,0)         1,03/1,57 (9,0-12,37) (1,51/2,37 (1,92/2,37) (1,92/2,92) (2,92/3,89) |

| Блок управления               |        |             |
|-------------------------------|--------|-------------|
| Электропитание                | В/ф/Гц | 230/1/50    |
| Габаритные размеры(В × Ш × Г) | мм     | 291×341×127 |
| Вес (нетто)                   | кг     | 3,0         |

| Ttomi reer bo b ttomi prettre |  |
|-------------------------------|--|
| Количество в комплекте        |  |

| Габаритные размеры (В × Ш × Г)      | ММ           |            | 431×199× | <103       |     |
|-------------------------------------|--------------|------------|----------|------------|-----|
| Вес (нетто)                         | КГ           | 2,0        |          | 2,7        | 4,5 |
| Количество в комплекте              |              |            | 1        |            |     |
| Диам. труб жидкостной линии<br>Вход | мм<br>(дюйм) | 6,35 (1/4) |          | 9,52 (3/8) |     |
| Диам. труб жидкостной линии Выход   | мм<br>(дюйм) | 6,35 (1/4) |          | 9,52 (3/8) |     |

Ответная часть разъема РСС-1А

Для осуществления управления посредством «сухого кон-

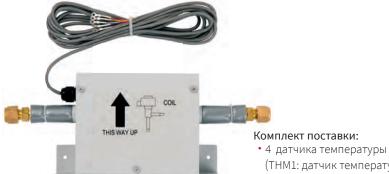
такта» и снятия сигнала «Авария».


Может подключаться как к плате управления DX Kit, так и к

плате наружного блока.

Один комплект РСС-1А содержит три разъема.




Пример конфигурации системы



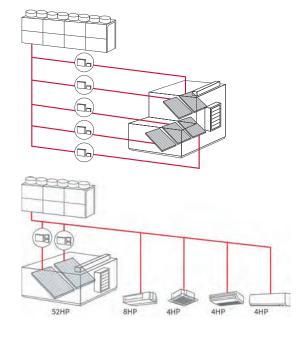


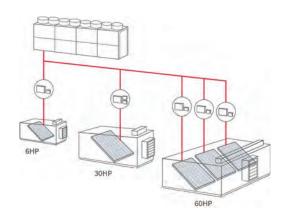






Комплект поставки:


(ТНМ1: датчик температуры воздуха на входе, ТНМ2: датчик температуры воздуха на выходе, ТНМЗ датчик температуры кипения.


ТНМ4: датчик температуры перегретого хладагента)

#### Функции и особенности

DX KIT позволяет использовать наружные блоки air365Max HITACHI в качестве компрессорно-конденсаторных блоков (ККБ) при подключении их к испарительным секциям приточных установок, тепловым завесам или другим стандартным внутренним блокам. В комплект поставки входят 4 датчика температуры, которые устанавливаются на подключаемый испаритель.

- DX KIT имеет степень защиты IP66.
- Поддерживает режимы работы как охлаждение, так и нагрев.
- Комплект DX KIT состоит из 2 модулей: блока расширительных вентилей и блока управления.
- Производительность в режимах охлаждения и нагрева определяется на основе заданной с пульта управления температуры и температуры потока воздуха на выходе.
- Комплект DX KIT имеет различные входы и выходы, обеспечивающие интеграцию оборудования в существующие системы управления. Помимо этого можно использовать также сигналы от наружного блока.
- Широкий диапазон производительностей от 28 до 85 кВт.
- Настройка производительности с шагом 2 л.с.
- Возможность подключения нескольких DX Kit к одному наружному блоку.
- Возможность подключения DX Kit и внутренних блоков System Free к одному наружному блоку.





#### Комплект DX KIT

|                                               |              |                     |                     | ХЛАДАГЕНТ R410A     |                     |                |
|-----------------------------------------------|--------------|---------------------|---------------------|---------------------|---------------------|----------------|
| Модель                                        |              |                     |                     | DXF-20.0A1          |                     |                |
| Настроенная производительность                | л.с.         | 12                  | 14                  | 16                  | 18                  | 20             |
| Совместимость                                 |              |                     | Нарух               | кные блоки Set Free | Sigma               |                |
| Холодопроизводительность                      | кВт          | 30,0<br>(28,0–33,5) | 35,0<br>(33,5–40,0) | 43,0 (40,0-45,0)    | 48,0 (45,0-50,0)    | 52,0 (50,0-56, |
| Теплопроизводительность                       | кВт          | 33,5 (31,5–37,5)    | 40,0 (37,5–45,0)    | 47,5 (45,0–50,0)    | 53,0<br>(50,0–56,0) | 60,0 (56,0–63, |
| Объем подключаемого теплообменника мин./макс. | Л            | 4,76/5,91           | 5,85/6,89           | 6,79/8,00           | 7,57/8,92           | 8,47/9,97      |
| Блок управления                               |              |                     |                     |                     |                     |                |
| Электропитание                                | В/ф/Гц       |                     |                     | 230/1/50            |                     |                |
| Габаритные размеры (В × Ш × Г)                | ММ           |                     |                     | 349×435×112         |                     |                |
| Вес (нетто)                                   | КГ           |                     |                     | 5,2                 |                     |                |
| Количество в комплекте                        |              |                     |                     | 1                   |                     |                |
| Блок расширительных вентилей                  |              |                     |                     |                     |                     |                |
| Габаритные размеры (В × Ш × Г)                | ММ           |                     |                     | 166×437×61          |                     |                |
| Вес (нетто)                                   | КГ           | 1,7                 |                     |                     |                     |                |
| Количество в комплекте                        |              | 1                   |                     |                     |                     |                |
| Диаметр труб жидкостной линии<br>Вход         | мм<br>(дюйм) | 12,7(1/2)           |                     |                     |                     |                |
| Диаметр труб жидкостной линии<br>Выход        | мм<br>(дюйм) | 12,7(1/2)           |                     |                     |                     |                |
|                                               |              |                     |                     | ХЛАДАГЕНТ R410A     |                     |                |
| Модель                                        |              |                     |                     | DXF-30.0A1          |                     |                |
| Настроенная производительность                | л.с.         | 22                  | 24                  | 26                  | 28                  | 30             |
| Совместимость                                 |              |                     | Нарух               | кные блоки Set Free | Sigma               |                |
| Холодопроизводительность                      | кВт          | 58,0 (56,0-61,5)    | 65,0 (61,5-69,0)    | 71,0 (69,0-73,0)    | 76,0 (73,0-80,0)    | 82,0 (80,0-85  |
| Теплопроизводительность                       | кВт          | 66,0 (63,0-69,0)    | 75,0 (69,0–77,5)    | 79,0 (77,5–82,5)    | 86,0 (82,5-90,0)    | 92,0 (90,0–95  |
| Объем подключаемого теплообменника мин./макс. | Л            | 9,04/11,13          | 9,50/12,34          | 10,39/12,89         | 11,39/13,86         | 12,36/14,73    |
| Блок управления                               |              |                     |                     |                     |                     |                |
| Электропитание                                | В/ф/Гц       |                     |                     | 230/1/50            |                     |                |
| Габаритные размеры (В × Ш × Г)                | ММ           | 349×435×112         |                     |                     |                     |                |
| Вес (нетто)                                   | КГ           | 5,2                 |                     |                     |                     |                |
| Количество в комплекте                        |              | 1                   |                     |                     |                     |                |
| Блок расширительных вентилей                  |              |                     |                     |                     |                     |                |
| Габаритные размеры (В × Ш × Г)                | ММ           | 166×437×61          |                     |                     |                     |                |
| Вес (нетто)                                   | КГ           | 1,7                 |                     |                     |                     |                |
| Количество в комплекте                        |              |                     |                     | 2                   |                     |                |
| Диаметр труб жидкостной линии<br>Вход         | мм<br>(дюйм) |                     |                     | 12,7 (1/2)          |                     |                |
|                                               |              |                     |                     |                     |                     |                |

мм (дюйм)

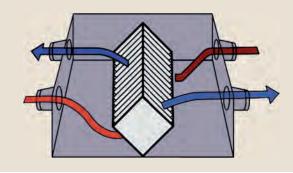
12,7 (1/2)

#### DX kit



Диаметр труб жидкостной линии Выход






#### Функции и особенности

Пластинчатые теплообменники позволяют утилизировать не только явную теплоту, но также и скрытую. Это, в свою очередь, позволяет снизить операционные затраты на электроэнергию и стоимость оборудования для кондиционирования воздуха (потребуется меньшая производительность), при этом обеспечив постоянную подачу свежего воздуха.

Более того, благодаря геометрии внутреннего пространства установок КРІ, упрощается процедура их монтажа и исключаются многие типичные ошибки. Рекуперативные вентиляционные установки КРІ обеспечивают помещение чистым приточным воздухом, используя единую систему управления с системой кондиционирования Set Free или IVX.

- Целлюлозный теплообменник для серии Е.
- Расход воздуха от 250 до 2000 м3/час
- Опциональные шумоглушители.
- Стандартные фильтры класса G3.
- Опциональный фильтр тонкой очистки класса F7.
- Управление работой по датчику CO2 (например, Jonson Controls, модель: CD200E00) (не поставляется HITACHI).
- Управление работой дополнительного электрического нагревателя.
- Функция задержки выключения вентиляторов.
- Полная совместимость с существующими системами кондиционирования IVX, Set Free.

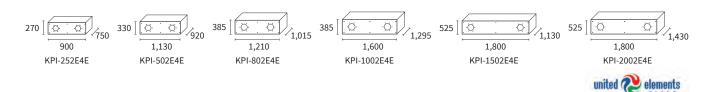


# Полупромышленные и мультизональные системы кондиционирования

#### Рекуперативные вентиляционные установки КРІ

| Внутренний блок                                 |        | KPI-252E4E  | KPI-502E4E   | KPI-802E4E    | KPI-1002E4E   | KPI-1502E4E   | KPI-2002E4E   |
|-------------------------------------------------|--------|-------------|--------------|---------------|---------------|---------------|---------------|
| Расход воздуха (H/M/L)                          | м³/ч   | 250/208/180 | 500/411/360  | 800/650/540   | 1000/800/620  | 1150/945/735  | 1650/1200/975 |
| Эффективность теплообмен                        | %      | 79          | 76           | 79            | 81            | 80            | 80            |
| Эффективность влагообмен охлаждение             | %      | 60          | 61           | 62            | 62            | 62.5          | 61.5          |
| Эффективность влагообмен нагрев                 | %      | 66          | 65           | 65            | 68            | 68            | 66.5          |
| Номинальная потребляемая мощность (H/M/L)       | Вт     | 48/32/25    | 110/69/52    | 243/148/92    | 261/154/83    | 496/318/190   | 694/505/192   |
| Статический напор                               | Па     | 55/35/30    | 80/55/42     | 90/60/40      | 95/65/40      | 228/185/90    | 282/145/95    |
| Уровень звукового давления (H/M/L)              | дБ(А)  | 28/27/25    | 33/31/30     | 35/34/33      | 37/34/32      | 39/37/35      | 40/39/36      |
| Тип рекуператора                                |        |             |              | Целлю         | лозный        |               |               |
| Габаритные размеры ВБ (В $\times$ Ш $\times$ Г) | ММ     | 270×900×750 | 330×1130×920 | 385×1210×1015 | 385×1600×1295 | 525×1800×1130 | 525×1800×1430 |
| Вес внутреннего блока (нетто)                   | КГ     | 34          | 46           | 51            | 79            | 97            | 106           |
| Диаметр воздуховодов                            | мм     | 150         | 200          | 250           | 300           | 355           | 355           |
| Электропитание                                  | В/ф/Гц |             |              | 230/          | 1/50          |               |               |

#### Шумоглушители и фильтры тонкой очистки для КРІ


| STL 30-200-L600 | STL 30-250-L600 | STL 30-300-L600 | STL 30-355-L600           |
|-----------------|-----------------|-----------------|---------------------------|
|                 |                 |                 |                           |
| KPI-502E4E      | KPI-802E4E      | KPI-1002E4E     | KPI-1502E4E & KPI-2002E4E |

Среднее снижение уровня шума составляет примерно 5 дБ(A) и зависит от конкретных условий места установки

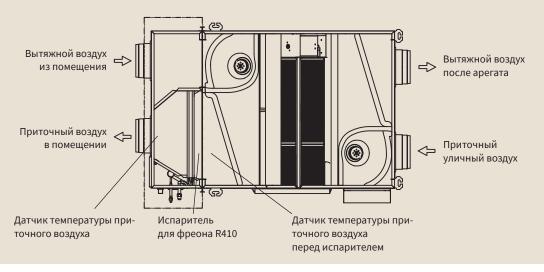
| HEF 252    | HEF 502    | HEF 802                | HEF 1002                 | HEF 1502    | HEF 2002    |
|------------|------------|------------------------|--------------------------|-------------|-------------|
|            |            |                        |                          |             |             |
| KPI-252E4E | KPI-502E4E | KPI-802E4E             | KPI-1002E4E              | KPI-1502E4E | KPI-2002E4E |
|            |            | Дополнительные фильтры | тонкой очистки класса F7 |             |             |

(155

...



# Рекуперативные вентиляционные установки Active KPI с секцией прямого испарения




#### Функции и особенности

Рекуперативные вентиляционные установки имеют в своем составе встроенный испаритель для фреона R410A, что позволяет не только обеспечить рекуперацию тепла, но также обеспечить дополнительный обогрев/охлаждение воздуха до требуемых параметров в тех случаях, когда одной только рекуперации недостаточно. Контроль осуществляется по температуре приточного воздуха. В состав входит перекрестноточный целлулоидный рекуператор энергии, позволяющий осуществлять обмен между воздушными потоками как теплом, так и влагой.

Рекуперативные установки Active KPI обеспечивают помещение чистым приточным воздухом, используя единую систему управления с системой кондиционирования PAC...

- Целлюлозный теплообменник.
- Горизонтальная установка.
- Расход воздуха от 500 до 1000 м3/час.
- Опциональные шумоглушители.
- Стандартные фильтры класса G3.
- Опциональный фильтр тонкой очистки класса F7.
- Управление работой по датчику CO2 (не поставляется HITACHI).
- Управление работой дополнительного электрического нагревателя (не поставляется HITACHI).
- Функция задержки выключения вентиляторов.
- Полная совместимость с существующими системами кондиционирования Set Free и PAC.



united **2** elements

#### Рекуперативные вентиляционные установки Active KPI с секцией прямого испарения

| Внутренний блок                                                        |              | KPI-502X4E    | KPI-802X4E    | KPI-1002X4E   |
|------------------------------------------------------------------------|--------------|---------------|---------------|---------------|
| Ном. холодопроизводительность (наружный блок IVX)                      | кВт          | _             | 7,40          | 9,70          |
| Ном. теплопроизводительность (наружный блок IVX)                       | кВт          | _             | 9,10          | 11,40         |
| Ном. холодопроизводительность (наружный блок SetFree)                  | кВт          | 5,32          | 8,00          | 10,83         |
| Ном. теплопроизводительность (наружный блок SetFree)                   | кВт          | 6,92          | 9,80          | 12,93         |
| Расход воздуха (H/M/L)                                                 | м³/ч         | 500/450/400   | 800/700/590   | 1000/820/740  |
| Эффективность теплообмен                                               | %            | 76            | 79            | 79            |
| Эффективность влагообмен охлаждение                                    | %            | 61            | 62            | 62            |
| Эффективность влагообмен нагрев                                        | %            | 65            | 65            | 65            |
| Номинальная потребляемая мощность (H/M/L)                              | Вт           | 111/85/56     | 255/161/108   | 357/198/150   |
| Статический напор                                                      | Па           | 90/72/58      | 110/80/57     | 170/105/80    |
| Уровень звукового давления (H/M/L)                                     | дБ(А)        | 32/30/29      | 34/33/32      | 36/33/31      |
| Диам. труб жидкостной линии внутреннего блока<br>(соед. развальцовкой) | мм<br>(дюйм) | 6,35 (1/4) 9, |               | 9,53 (3/8)    |
| Диам. труб газовой линии внутреннего блока<br>(соед. развальцовкой)    | мм<br>(дюйм) | 12,7 (1/2)    | 15,88         | 3 (5/8)       |
| Тип рекуператора                                                       |              |               | Целлюлозный   |               |
| Габаритные размеры внутреннего блока (В × Ш × Г)                       | ММ           | 330x1435x920  | 385x1513x1015 | 385x1904x1295 |
| Вес внутреннего блока (нетто)                                          | КГ           | 62            | 69            | 100           |
| Диаметр воздуховодов                                                   | ММ           | 200           | 250           | 300           |
| Электропитание                                                         | В/ф/Гц       |               | 230/1/50      |               |

#### Шумоглушители и фильтры тонкой очистки для КРІ

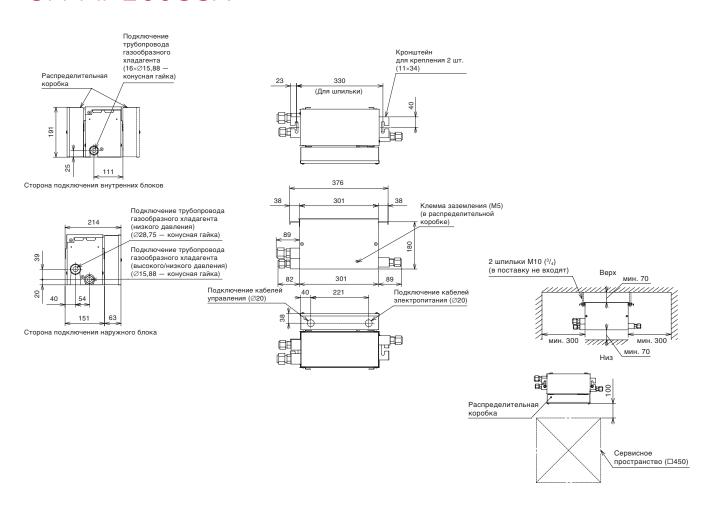
| STL 30-200-L600 | STL 30-250-L600                                   | STL 30-300-L600 |
|-----------------|---------------------------------------------------|-----------------|
|                 |                                                   |                 |
| KPI-502X4E      | KPI-802X4E                                        | KPI-1002X4E     |
|                 | уровня шума составляет<br>конкретных условий мест |                 |

| HEF 502     | HEF 802                  | HEF 1002      |
|-------------|--------------------------|---------------|
|             |                          |               |
| KPI-502X4E  | KPI-802X4E               | KPI-1002X4E   |
| Дополнитель | ьные фильтры тонкой очис | тки класса F7 |

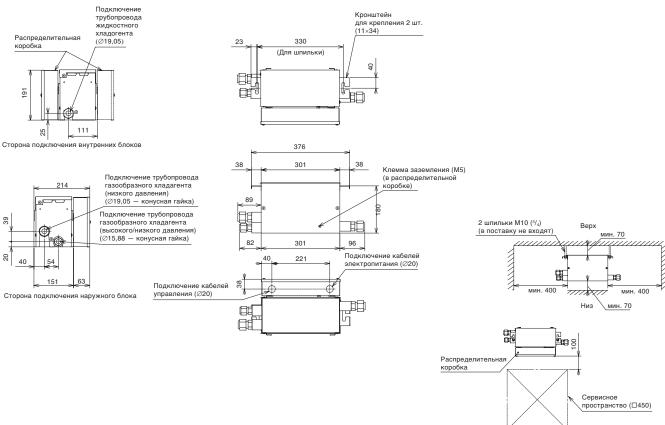
#### KPI active



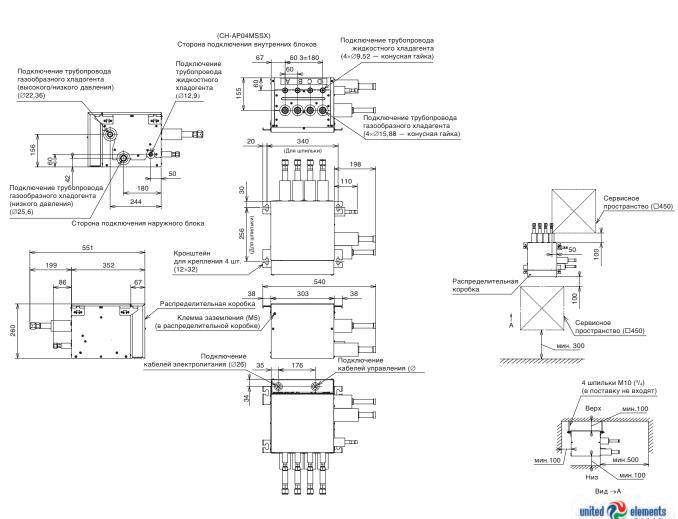








# Блоки переключения режимов (СН-блоки)

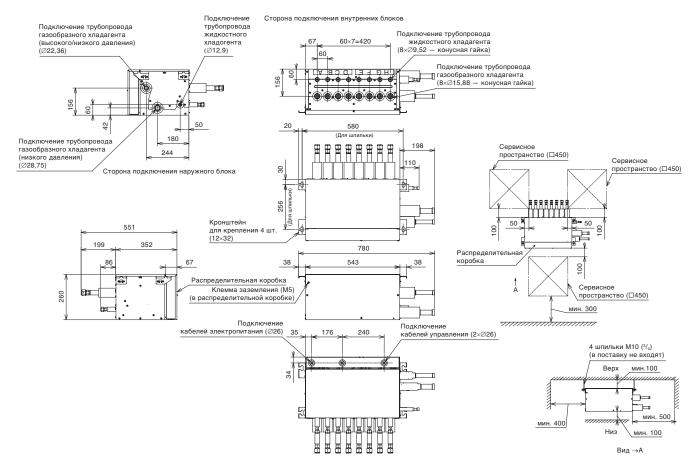
|                                                                       | Тип                                                       | Однопо      | ортовые     |             | Многопортовые |             |              |  |
|-----------------------------------------------------------------------|-----------------------------------------------------------|-------------|-------------|-------------|---------------|-------------|--------------|--|
|                                                                       | Модель                                                    | CH-AP160SSX | CH-AP280SSX | CH-AP04MSSX | CH-AP08MSSX   | CH-AP12MSSX | CH-AP16MSSX  |  |
| Изображение                                                           |                                                           | P           |             | 1           | -             | A SAMMA     | -            |  |
| Габаритные размеры (В $	imes$ Ш $	imes$ Г), мм                        |                                                           | 191×301×214 |             | 260×303×352 | 260×543×352   | 260×783×352 | 260×1023×352 |  |
| Вес нетто, кг                                                         |                                                           | 6           |             | 14          | 25            | 36          | 47           |  |
| Электропитание, В/ф/Гц                                                |                                                           |             |             | 230/1/50    |               |             |              |  |
| Электрические<br>параметры                                            |                                                           |             | 5           | 11,2        | 22,4          | 33,6        | 44,8         |  |
| Ток, А                                                                |                                                           | 0,1         |             | 0,2         | 0,4           | 0,6         | 0,8          |  |
| Максимальная производительность подсоединяемых внутренних блоков, кВт |                                                           | 16          | 28          | 44,8        |               | 85          |              |  |
| Количество порт                                                       | ОВ                                                        | 1           | 1           | 4           | 8             | 12          | 16           |  |
| Максимальное ко<br>внутренних блок                                    | оличество подсоединяемых<br>ов к 1 порту                  | 7           | 8           |             |               | 6           |              |  |
| Максимальная<br>длина трубо-<br>провода, м                            | Между СН-блоком<br>и внутренними блоками                  |             |             |             | 40            |             |              |  |
|                                                                       | Между СН-блоками                                          |             |             | 15          |               |             |              |  |
| Максимальный<br>перепад                                               | Между СН-блоками<br>и внутренними блоками                 |             |             |             | 15            |             |              |  |
| высот, м                                                              | Между подключёнными к одному СН-блоку внутренними блоками |             |             |             | 4             |             |              |  |


# CH-AP160SSX

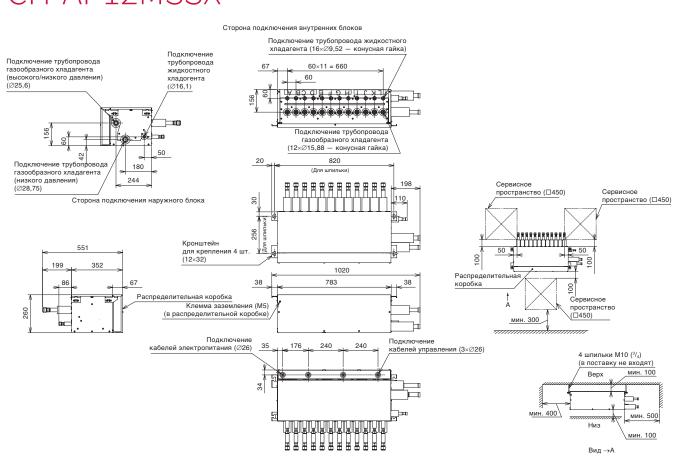


# CH-AP280SSX

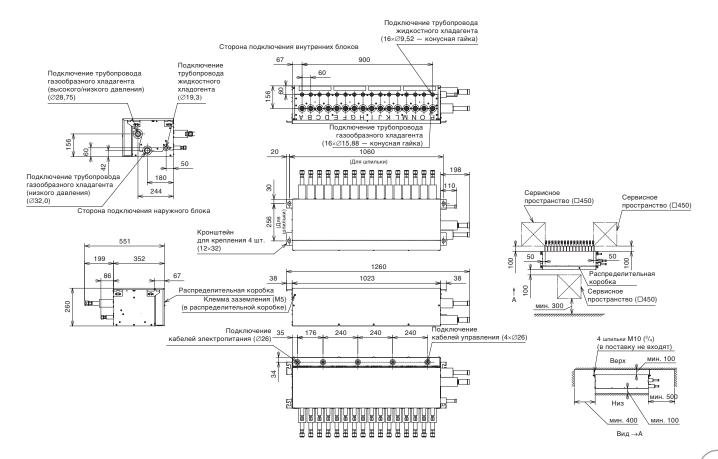



# CH-AP04MSSX




(159

Полупромышленные и мультизональные системы кондиционирования


# CH-AP08MSSX

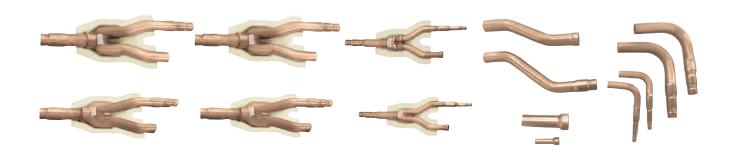


## CH-AP12MSSX

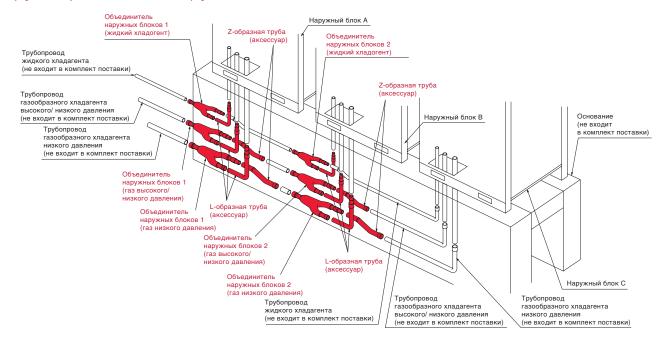


# CH-AP16MSSX






# Объединители наружных блоков


#### Комплект объединителей фреонопроводов для наружных блоков

|                                 | Трехтрубная схема |                |               | иа                     |           | Двухтрубная схема |               |                        |  |
|---------------------------------|-------------------|----------------|---------------|------------------------|-----------|-------------------|---------------|------------------------|--|
| Наименование                    | Модель            | Мощность, л.с. |               | Количество             | Модель    | Мощность, л.с.    |               | Количество             |  |
|                                 |                   | Серия FSXNP2E  | Серия FSXNS2E | объединяемых<br>блоков |           | Серия FSXNP2E     | Серия FSXNS2E | объединяемых<br>блоков |  |
|                                 | MC-20XN1          | 20-24          | -             | 2                      | MC-20AN1  | 20-24             | _             | 2                      |  |
| Объединители<br>наружных блоков | MC-21XN1          | 26-36          | 26-48         | 2                      | MC-21AN1  | 26-36             | 26-48         | 2                      |  |
| .,                              | MC-30XN1          | 38-54          | 50-54         | 3                      | MC-30AN1  | 38-54             | 50-54         | 3                      |  |
|                                 |                   |                |               |                        | MC-NP31SA | _                 | 56-72         | 3                      |  |
|                                 |                   |                |               |                        | MC-NP40SA | _                 | 74-96         | 4                      |  |

#### MC-30XN1



#### Трубопроводы от наружного блока



- Выполнить соединение труб между наружными блоками согласно рисунку.
- См. «Руководство по установке и обслуживанию» наружного блока для определения требуемого расстояния между наружными блоками и объединителями для подключения трубопроводов.

# Разветвители внутренних блоков

Разветвители фреонопроводов . Магистральный участок трубопровода и первый разветвитель

Трехтрубная система

|           |                                                          |        | Диаметр, мм                                          |                                |  |
|-----------|----------------------------------------------------------|--------|------------------------------------------------------|--------------------------------|--|
| Модель    | Суммарная мощность внутренних Газовая блоков, л.с. линия |        | Газовая<br>линия<br>высокого/<br>низкого<br>давления | Линия<br>жидкого<br>хладагента |  |
| E-52XN3   | 5                                                        | Ø15,88 | Ø12,7                                                | Ø9,52                          |  |
| E-102XN3  | 6/8                                                      | Ø19,05 | Ø15,88                                               | Ø9,52                          |  |
| E-102XN3  | 10                                                       | Ø22,2  | Ø19,05                                               | Ø9,52                          |  |
| E-162XN3  | 12/14                                                    | Ø25,4  | Ø22,2                                                | Ø12,7                          |  |
| E-102VIV2 | 16                                                       | Ø28,58 | Ø22,2                                                | Ø12,7                          |  |
| E-202XN3  | 18/20                                                    | Ø28,58 | Ø22,2                                                | Ø15,88                         |  |
| E-242XN3  | 22/24                                                    | Ø28,58 | Ø25,4                                                | Ø15,88                         |  |
|           | 26                                                       | Ø31,75 | Ø25,4                                                | Ø19,05                         |  |
| E-322XN3  | 28-34                                                    | Ø31,75 | Ø28,58                                               | Ø19,05                         |  |
| L-JZZVINO | 36                                                       | Ø38,1  | Ø28,58                                               | Ø19,05                         |  |
|           | 38-54                                                    | Ø38,1  | Ø31,75                                               | Ø19,05                         |  |

#### Двухтрубная система

|                |                                            | Диаме            | етр, мм                        |
|----------------|--------------------------------------------|------------------|--------------------------------|
| Модель         | Суммарная мощность внутренних блоков, л.с. | Газовая<br>линия | Линия<br>жидкого<br>хладагента |
|                | 5                                          | Ø15,88           | Ø9,52                          |
| E-102SN4       | 6/8                                        | Ø19,05           | Ø9,52                          |
|                | 10                                         | Ø22,20           | Ø9,52                          |
| E-162SN4       | 12/14                                      | Ø25,40           | Ø12,70                         |
| E-1023N4       | 16                                         | Ø28,58           | Ø12,70                         |
| E-242SN3       | 18-24                                      | Ø28,58           | Ø15,88                         |
| F 0000110      | 26-34                                      | Ø31,75           | Ø19,05                         |
| E-302SN3       | 36-54                                      | Ø38,10           | Ø19,05                         |
|                | 56-66                                      | Ø44,50           | Ø19,05                         |
| MIN NIDOCOO AO | 68-72                                      | Ø44,50           | Ø22,20                         |
| MW-NP2682A3    | 74-88                                      | Ø50,80           | Ø22,20                         |
|                | 90-96                                      | Ø50,80           | Ø25,40                         |

#### Линейные разветвители Трехтрубная система

|          |                                                     |                  | Диаметр, мм                                          |                                |
|----------|-----------------------------------------------------|------------------|------------------------------------------------------|--------------------------------|
| Модель   | Суммарная<br>мощность<br>внутренних<br>блоков, л.с. | Газовая<br>линия | Газовая<br>линия<br>высокого/<br>низкого<br>давления | Линия<br>жидкого<br>хладагента |
| E-52XN3  | < 6                                                 | Ø15,88           | Ø12,7                                                | Ø9,52                          |
| E-102XN3 | 6-8,99                                              | Ø19,05           | Ø15,88                                               | Ø9,52                          |
| E-102XN3 | 9-11,99                                             | Ø22,2            | Ø19,05                                               | Ø9,52                          |
| E-162XN3 | 12-15,99                                            | Ø25,4            | Ø22,2                                                | Ø12,7                          |
| E-102XN3 | 16-17,99                                            | Ø28,58           | Ø22,2                                                | Ø12,7                          |
| E-202XN3 | 18-21,99                                            | Ø28,58           | Ø22,2                                                | Ø15,88                         |
| E-242XN3 | 22-25,99                                            | Ø28,58           | Ø25,4                                                | Ø15,88                         |
| E-322XN3 | 26-35,99                                            | Ø31,75           | Ø28,58                                               | Ø19,05                         |
| L JZZANJ | > 36                                                | Ø38,1            | Ø31,75                                               | Ø19,05                         |

#### Двухтрубная система

|             | Суммарная                              | Диаме            | тр, мм                      |  |
|-------------|----------------------------------------|------------------|-----------------------------|--|
| Модель      | мощность<br>внутренних<br>блоков, л.с. | Газовая<br>линия | Линия жидкого<br>хладагента |  |
|             | < 6                                    | Ø15,88           | Ø9,52                       |  |
| E-102SN4    | 6-8,99                                 | Ø19,05           | Ø9,52                       |  |
|             | 9-11,99                                | Ø22,2            | Ø9,52                       |  |
| E-162SN4    | 12-15,99                               | Ø25,4            | Ø12,7                       |  |
| E-1023N4    | 16-17,99                               | Ø28,58           | Ø12,7                       |  |
| E-242SN3    | 18-25,99                               | Ø28,58           | Ø15,88                      |  |
| E 0000N0    | 26-35,99                               | Ø31,75           | Ø19,05                      |  |
| E-302SN3    | 36-55,99                               | Ø38,1            | Ø19,05                      |  |
|             | 56-67,99                               | Ø44 <b>,</b> 45  | Ø19,05                      |  |
| MW ND2C02A2 | 68-73,99                               | Ø44 <b>,</b> 45  | Ø22,2                       |  |
| MW-NP2682A3 | 74-88,99                               | Ø50,8            | Ø22,2                       |  |
|             | > 90                                   | Ø50,8            | Ø25,4                       |  |

#### Участок трубопровода от разветвителя до внутреннего блока

| Производительность      | Диаметр, мм   |                          |  |  |
|-------------------------|---------------|--------------------------|--|--|
| внутреннего блока, л.с. | Газовая линия | Линия жидкого хладагента |  |  |
| 0,4-1,5                 | Ø12,7         | Ø6,35(*)                 |  |  |
| 2,0                     | Ø15,88        | Ø6,35(*)                 |  |  |
| 2,5-6,0                 | Ø15,88        | Ø9,52                    |  |  |
| 8,0                     | Ø19,05        | Ø9,52                    |  |  |
| 10,0                    | Ø22,2         | Ø9,52                    |  |  |
| 16,0                    | Ø28,58        | Ø12,7                    |  |  |
| 20,0                    | Ø28,58        | Ø15,88                   |  |  |

#### Коллектор

| Модель   | Мощность, л.с. | Число ответвлений | Примечание          |
|----------|----------------|-------------------|---------------------|
| MH-108XN | 5–10           | 8                 | Трехтрубная система |
| MH-84AN1 | 5–8            | 4                 | D                   |
| MH-108AN | 5-10           | 8                 | Двухтрубная система |

 $^{\star}$  Если длина трубопровода превышает 15 м, используйте трубопровод  $\varnothing$ 9,52 мм.



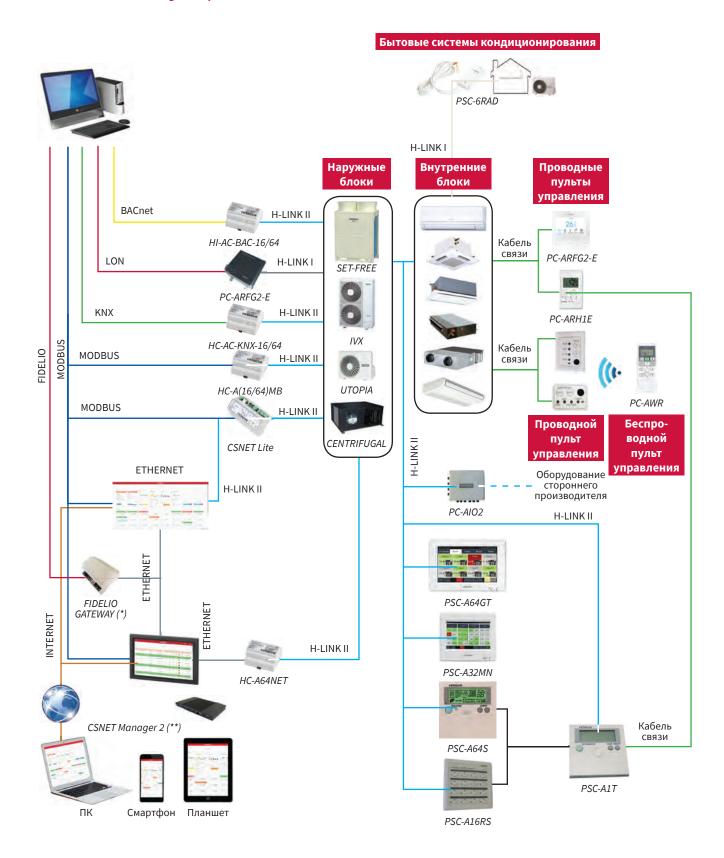
Полупромышленные и мультизональные (5 системы кондиционирования

# **HITACHI**

# Системы управления

Cooling & Heating




В настоящее время практически любые инженерные системы имеют свои собственные системы управления. Современные здания настолько укомплектованы инженерным оборудованием, что неизбежно возникает задача не только локального, но и центрального управления, которая усложняется тем, что инженерное оборудование является продуктами различных компаний. Поэтому для его объединения в единую систему BMS (Building Management System) используются определенные протоколы управления.

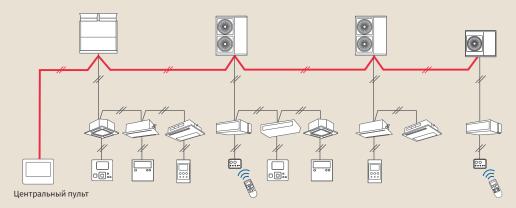
Все это справедливо и для систем кондиционирования воздуха. Чтобы они были передовыми, мало иметь энергоэффективную и высокотехнологичную технику, нужно, чтобы она имела достаточно современные системы управления, которые просты в использовании и позволяют управлять комфортными параметрами воздуха в помещении или целом здании, находясь в непосредственной близости от оборудования, из специальных диспетчерских помещений, а также через Интернет из любой точки мира.

Климатические системы Hitachi обладают всеми вышеперечисленными свойствами. Имеется возможность как локального, так и центрального управления, которое осуществляется посредством собственного закрытого протокола связи H-Link II, но при этом есть возможность, используя шлюзы, подключаться к системам «умный дом» и BMS, построенным на протоколах KNX, Modbus и BACnet.



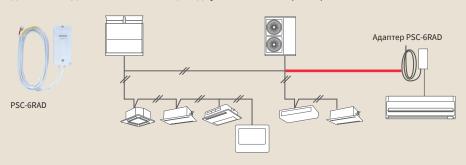
# Локальные и центральные системы управления HITACHI




# H-LINK II

#### Что такое H-LINK II?

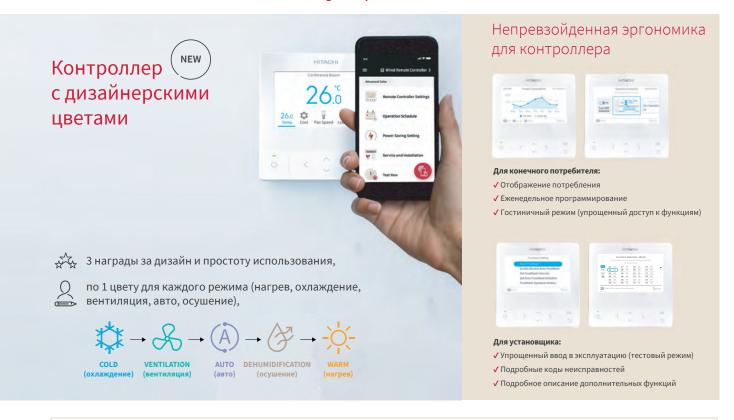
H-LINK II — это внутренний закрытый протокол Hitachi, который позволяет управлять системами, состоящими из большого числа внутренних и наружных блоков с одной точки, а так же обеспечивать обмен данными между устройствами. Он упрощает работу монтажных и сервисных организаций при пуско-наладке оборудования и его обслуживании. Для владельцев зданий и жильцов обеспечивает высокую универсальность систем индивидуального и центрального управления.


#### Преимущества

- 1. Единый протокол связи для мультизональных систем больших зданий, полупромышленного оборудования для магазинов и офисов, а также для бытовых систем.
- 2. Неполярное соединение.
- 3. Необходимо только закрепить кабель в клеммах (адаптер необходим только для бытовых сплитсистем).



#### Единый протокол связи для VRF/PAC/RAC


Системы различных типов VRF/PAC/RAC могут быть подключены к единой центральной системе управления, для этого вам необходимо объединить их с помощью двухжильного экранированного кабеля по линии управления.



| Сводная таблица характеристик H-LINK                                       |        |
|----------------------------------------------------------------------------|--------|
| Максимальное число гидравлических контуров                                 | 64     |
| Диапазон адресов внутренних блоков/<br>гидравлических контуров             | 0-63   |
| Максимальное количество внутренних блоков / систем                         | 160    |
| Максимальное количество устройств в одной сети H-LINK                      | 200    |
| Максимальная суммарная длина кабеля связи                                  | 1000 м |
| При использовании усилителя сигнала PSC-5HR, ллина может быть увеличена до | 5000 м |



# Широкий выбор совместимых пультов дистанционного управления



#### Полноразмерный пульт дистанционного управления



PC-ARFG-E





PC-ARFG2-E PC-ARFG2-EB

Новый белый или черный пульт дистанционного управления. Все существующие функции PC-ARFG-E сохранены:

- Управление от 1 до 16 внутренними блоками в качестве ведущего и/или ведомого устройства
- Высококачественный цветной экран
- Интуитивно понятный интерфейс на французском языке
- Встроенный датчик помещения
- График энергопотребления
- История кодов неисправностей
- Гостиничный режим (быстрый сброс настроек, упрощенный доступ к настройкам)

#### Упрощенный пульт дистанционного управления





PC-ARH1E



PC-ARC-E

- Компактность и дизайн благодаря ЖК-дисплею (90 x 90 x 17 мм)
- Управление от 1 до 16 внутренними блоками в качестве ведущего и/или ведомого устройства
- Упрощенный доступ к основным функциям
- Настройка дополнительных настроек
- Для большего комфорта: заданное значение регулируется на +/-0,5°C, функция защиты от замерзания

Инфракрасный пульт дистанционного управления (беспроводной)



- Управление от 1 до 16 внутренними блоками в качестве ведущего и/или ведомого устройства
- Упрощенный доступ к основным функциям
- Работает с инфракрасным приемником

#### Приемники сигналов

#### Модель

#### PC-ALHC1



Для установки на лицевую панель Описание Р-АР56NAM (кассетные блоки RCIM-FSRE)

RCIM-FSRE)

Место
установки
В угол лицевой панели

NA OF STREET

PC-ALHD1

Для установки на лицевую панель P-AP90(160)DNA (кассетные блоки RCD)

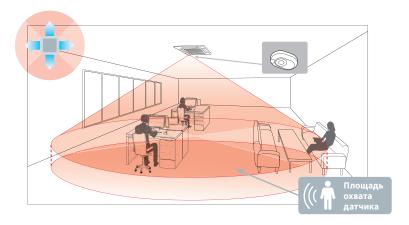
На панели



PC-ALH3

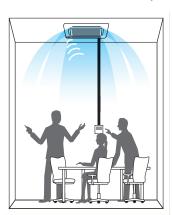
Для установки на лицевую панель P-N23NA2 (кассетные блоки RCI-FSR1)

В угол лицевой панели

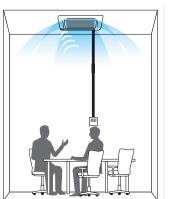



PC-ALHZ1

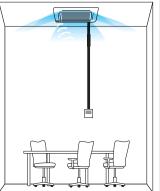
Приемник сигнала настенного монтажа совместимый со всеми внутренними блоками


На стену

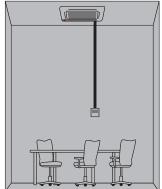
#### Датчики движения







#### Экономия электроэнергии в зависимости от активности пользователей




Стандартная работа в помещении с низкой активностью

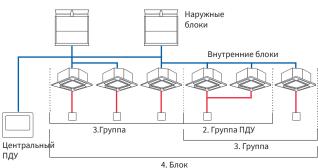


Работа со сниженной производственной активностью



Работа со сниженной производительностью в помещениях без пользователей




Так же возможно отключение оборудования при отсутствии пользователей в течение 30 мин.

| Комплект датчика движения | Внутренний блок                   |
|---------------------------|-----------------------------------|
| SOR-MSK                   | Четырехпоточный кассетный         |
| SOR-NEC                   | Четырехпоточный кассетный 600×600 |
| SOR-NED                   | Двухпоточный кассетный            |
| SOR-MSK                   | <b>Е</b> Канальный                |
| SOR-NEP                   | Подпотолочный                     |



#### Центральные пульты управления







Размеры: 120×120×15 (+53) мм

Управление работой 64 групп (160 внутренних блоков) с возможностью зонального управления, можно управлять работой 4 зон, каждая из которых может состоять максимум из 16 групп. Можно настраивать некоторые дополнительные функции для групп, которые могут также объединяться с помощью недельного таймера PSC-A1T. В единой сети управления H-Link II может быть включено до 8 устройств PSC-A64S

- выбор режима работы;
- установка температуры;
- выбор скорости вращения вентилятора;
- блокировка местных пультов управления;
- настройка входов/выходов для управления внешними сигналами;
- недельный таймер (в сочетании c PSC-A1T);
- отображение сигнала аварии



Размеры: 140×120×22 (+53) мм

Центральный пульт управления с цветным сенсорным 5-ти дюймовым ЖК дисплеем может управлять работой 32 групп (до 160 внутренних блоков). В группу может входить до 16 внутренних блоков. Совместим с системами централизованного управления, за исключением устройств BMS

#### PSC-A32MN

#### Особенности и характеристики

- вкл./выкл.;
- выбор режима работы;
- установка температуры; управление жалюзи;
- выбор скорости вращения вентилятора:
- отображение сигнала аварии;
- недельный таймер;
- настройка входов/выходов для управления внешними сигналами;
- лоступ в сервисное меню:
- настройка ограничения выбора
- температур; отображение времени работы каждого внутреннего блока;
- блокировка местных пультов управления:
- отображение энергопотребления в графическом виде;
- справочное меню;
- доступ к меню настройки дополнительных функций



#### Размеры: 250×170×25 (+55) мм

Центральный пульт управления с цветным сенсорным 8,5 дюймовым ЖК дисплеем может управлять работой 64 групп (до 160 внутренних блоков) с возможностью зонального управления, можно управлять работой 4 зон, каждая из которых может состоять максимум из 16 групп. Совместим с системами централизованного управления, за исключением устройств BMS.

#### PSC-A64GT

#### Особенности и характеристики

- выбор режима работы;
- установка температуры;
- управление жалюзи;
- отображение сигнала аварии; недельный таймер;
- выбор скорости вращения вентилятора;
- блокировка местных пультов управления;
- настройка ограничения выбора
- настройка входов/выходов для управления внешними сигналами;
- отображение времени работы каждого внутреннего блока;
- доступ в сервисное меню;
- отображение энергопотребления в графическом виде;
- справочное меню;
- доступ к меню настройки дополнительных функций





Размеры: 120×120×15 (+53) мм

Групповой центральный пульт управления, который позволяет управлять работой 16 групп внутренних блоков, их включением и отключением, с возможностью зонального управления, можно управлять работой 4 зон, каждая из которых может состоять максимум из 16 групп. В единой сети управления H-Link II может быть включено до 8 устройств PSC-A16RS

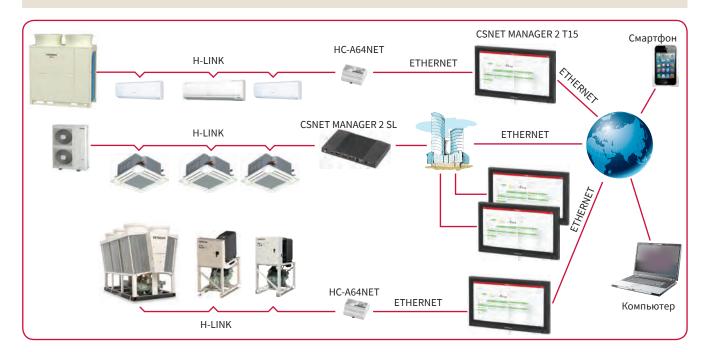
#### Особенности и характеристики

- настройка входов/выходов для управления внешними сигналами вкл./выкл. (импульсные режимы или выход DC 12V);
- возможность проведения пробного пуска («Test Run»)

#### PSC-A1T (Недельный таймер)



Программируемый недельный таймер используется параллельно с центральным пультом управления PSC-A64S


#### Особенности и характеристики

- до 3 вкл./выкл. в день;
- настройка двух недельных программ;
- запитывается от линии управления



### **CSNET MANAGER 2**

CSNET MANAGER 2— это система диспетчеризации и администрирования климатической техникой HITACHI. Удаленный контроль внутренних блоков, вентиляционных установок, тепловых насосов и чиллеров помимо удобства и многообразия функций понижает стоимость эксплуатационных затрат, оптимизирует индивидуальное управление, своевременно предупреждает о неисправностях.





#### CSNET Manager 2 T10

- Подключение до 16 интерфейсов и до 1024 внутренних блоков (16×64).
- 10" емкостной сенсорный экран для диспетчеризации по средством системы CSNET Manager 2.
- Легкий и компактный с экраном высокого разрешения.
- Улучшенный пользовательский интерфейс.
- Доступ через Интернет посредством компьютера, планшета или смартфона.
- Поддержка протокола Modbus
- Учет пропорционального энергопотребления.

#### Совместимость: VRF, IVX.



#### **CSNET Lite**

- Подключение до 64 внутренних блоков в единой сети H-LINK.
- Шлюз H-LINK для подключения к системе CSNET Manager.
- Упрощенное решение для небольших объектов.
- Установка на ДИН-рейку.
- нет необходимости в отдельном ПК.
- Доступ через Интернет посредством компьютера, планшета или смартфона.

#### Совместимость: VRF, IVX.



#### CSNET Manager 2 T15

- Подключение до 16 интерфейсов и до 1024 внутренних блоков (16×64).
- 15" емкостной сенсорный экран для диспетчеризации по средством системы CSNET Manager 2.
- Легкий и компактный с экраном высокого разрешения
- Улучшенный пользовательский интерфейс.
- Доступ через Интернет посредством компьютера, планшета или смартфона.
- Поддержка протокола Modbus
- Учет пропорционального энергопотребления.

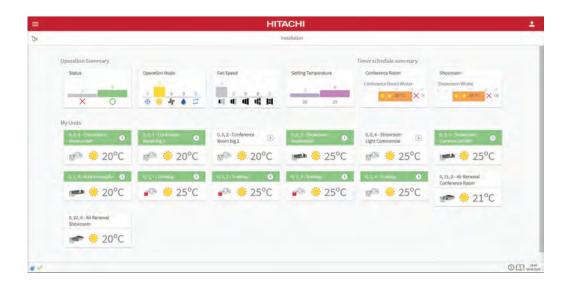
#### Совместимость: VRF, IVX.



#### Шлюз H-Link

- HC-A64NET
- Подключение до 64 внутренних блоков в единой сети H-LINK.
- Шлюз H-LINK для подключения к системе CSNET Manager.
- Необходимый элемент для подключения CSNET Manager 2 T10/T15 или SL.

#### Совместимость: VRF, IVX.




#### **CSNET Manager 2 SL**

- Подключение до 16 интерфейсов и до 1024 внутренних блоков (16×64).
- Устройство для диспетчеризации по средством системы CSNET Managerc 2 использованием персонального компьютера.
- Те же функции, что и у CSNET Manager 2 с экранами Т10 и Т15.
- Можно управлять, подключив устройство к компьютеру или напрямую к монитору. Один Ethernet порт, два USB порта и подключение экрана через HDMI.
- Доступ через Интернет посредством компьютера, планшета или смартфона.
- Учет пропорционального энергопотребления.

Совместимость: VRF, IVX.

Администрирование климатической техники и вывод рабочих параметров системы CSNET MANAGER 2 могут быть организованы по желанию заказчика в виде элементов мнемосхем на поэтажных планах и в виде таблицы с отображением полной информации о работе систем и показателей всех датчиков холодильного контура.









#### Состав

CSNET MANAGER 2 состоит из интерфейсного модуля и устройства ввода и отображения информации. Система комплектуется в зависимости от количества, типа подключенного оборудования, необходимости использования компьютера и количества обслуживаемых помещений. В базовом варианте систему оснащают планшетным компьютером и интерфейсным шлюзом, причем для малых и средних объектов выбирают Ethernet интерфейс (HC-A64NET), а при управлении с компьютера — интерфейсным шлюзом и CSNET MANAGER 2 SL. Этот интерфейс одновременно является и Modbus-шлюзом, и может быть задействован для интеграции оборудования НІТАСНІ в BMS здания. Планшетный компьютер поставляется в двух версиях, с экраном 10' или 15', с возможностью установки на стену или на стол.

#### Параметры функционирования

Управление и контроль всех параметров климатической техники HITACHI: Set Free, IVX, Centrifugal, KPI, DX-kit, RAC, Chiller.



# Мнемосхема холодильного контура

отображает мгновенные значения температур, давлений, частоты компрессора, степени открытия клапанов, аварийные защиты и т.д.



#### Учет энергопотребления


Пропорциональный учет потребленной электроэнергии ведется пропорционально полученному из системы холоду(теплу) на 
основе данных с датчиков температуры и давления, ЭРВ 
и т.д. Эта функция доступна в 
стандартной комплектации. В случае установки дополнительных счетчиков показания отображаются в кВт/час.





#### Работа по расписанию

Для удобства функционирования предусмотрено несколько таймерных программ, позволяющих программировать работу оборудования на 4 года.



#### Управление со смартфона

Совместно с CSNET MANAGER 2.



Модель

#### PSC-A32MN PSC-A64GT

| -    | -  |   | -   |
|------|----|---|-----|
|      |    |   | 200 |
| M H  | 90 |   | -   |
| - 10 |    | - | -   |







|                     | Экран                                         |                                                              | 5,0-дюймовый<br>цветной | 8,5-дюймовый<br>цветной | Приобретаемые<br>отдельно ПК<br>или панель HITACHI          | Приобретаемая<br>отдельно сенсорная<br>панель HITACHI |
|---------------------|-----------------------------------------------|--------------------------------------------------------------|-------------------------|-------------------------|-------------------------------------------------------------|-------------------------------------------------------|
| Сравнение           | Ввод команд                                   |                                                              | Сенсорный<br>экран      | Сенсорный<br>экран      | Приобретаемые<br>отдельно клавиатура<br>или сенсорный экран | Приобретаемая<br>отдельно сенсорная<br>панель HITACHI |
| функцио-<br>нала    |                                               | Группы ПД                                                    | 32                      | 64                      | _                                                           | _                                                     |
|                     |                                               | Группы                                                       | 4                       | 64                      | 64                                                          | 64                                                    |
|                     |                                               | Блоки                                                        | 4 (2/4/8/16)            | 4                       | 64                                                          | 64                                                    |
|                     | подключения                                   | Внутренние блоки                                             | 160                     | 160                     | 64(1 интерфейс)                                             | 64 (1 интерфейс)                                      |
|                     |                                               | Наружные блоки                                               | 64                      | 64                      | 64                                                          | 64                                                    |
|                     | Все одновременно                              |                                                              | •                       | •                       | •                                                           | •                                                     |
|                     | Каждым блоком отдельно                        | )                                                            | •                       | •                       | •                                                           | •                                                     |
| Способы             | Каждой группой ПЛУ                            |                                                              | •                       | •                       | _                                                           | _                                                     |
| управления          | Каждой группой                                |                                                              | _                       | _                       | •                                                           | •                                                     |
|                     | Каждым внешним блоком                         | т в группе                                                   | _                       | _                       |                                                             | •                                                     |
|                     | Вкл. / Выкл.                                  | , , , , , , , , , , , , , , , ,                              |                         | •                       |                                                             |                                                       |
|                     | Режим работы                                  |                                                              |                         |                         |                                                             |                                                       |
|                     | Температура                                   |                                                              |                         | •                       |                                                             |                                                       |
|                     |                                               |                                                              |                         | •                       |                                                             | •                                                     |
| Регули-             | Скорость вентилятора                          |                                                              | •                       | •                       | •                                                           | •                                                     |
| руемые<br>параметры | Положение жалюзи                              |                                                              | •                       | •                       | •                                                           | •                                                     |
| параметры           | Блокировка ПДУ                                |                                                              | •                       | •                       | •                                                           | •                                                     |
|                     | Сброс индикации необход                       |                                                              | •                       | •                       | •                                                           | •                                                     |
|                     | Ограничение производит                        | гельности наружных блоков                                    | •                       | _                       | •                                                           | •                                                     |
|                     | Ограничение уровня шум                        | а НБ                                                         | _                       | _                       | •                                                           | •                                                     |
|                     | Вкл./выкл.                                    |                                                              | •                       | •                       | •                                                           | •                                                     |
|                     | Режим работы                                  |                                                              | •                       | •                       | •                                                           | •                                                     |
|                     | Температура                                   |                                                              | •                       | •                       | •                                                           | •                                                     |
|                     | Скорость вентилятора                          |                                                              | •                       | •                       | •                                                           | •                                                     |
| Отслежи-            | Положение жалюзи                              |                                                              | •                       | •                       | •                                                           | •                                                     |
| ваемые              | Блокировка ПДУ                                |                                                              | •                       | •                       | •                                                           | •                                                     |
| параметры           | Код ошибки                                    |                                                              | •                       | •                       | •                                                           | •                                                     |
|                     | Индикация необходимост                        | ги чистки фильтра                                            | •                       | •                       | •                                                           | •                                                     |
|                     | Температура воздуха на в                      |                                                              |                         |                         |                                                             | •                                                     |
|                     | Температура наружного в                       |                                                              |                         |                         |                                                             |                                                       |
|                     | Время наработки                               | лоздули                                                      |                         |                         |                                                             |                                                       |
|                     | Недельный таймер                              |                                                              |                         |                         |                                                             |                                                       |
|                     |                                               | 211                                                          | 10                      | 10                      | 16                                                          | 16                                                    |
| Работа              | Количество действий в де<br>Таймер отключения | end                                                          | 10                      | 10                      | 16                                                          | 16                                                    |
| по расписа-         | ·                                             |                                                              | •                       | •                       |                                                             | •                                                     |
| нию                 | Настройка работы в выхо                       |                                                              | _                       | <del>-</del>            | •                                                           | •                                                     |
|                     | Настройка расписания на                       |                                                              | •                       | •                       | •                                                           | •                                                     |
|                     | Расписание работы групп                       |                                                              | _                       | _                       | •                                                           | •                                                     |
|                     | Настройка работы                              | Вкл./выкл.                                                   | •                       | •                       | •                                                           | •                                                     |
|                     | с входными внешними<br>сигналами              | Экстренная остановка<br>Настройка ограничения<br>потребления | •                       | _                       | •                                                           | •                                                     |
|                     | Настройка работы<br>с выходными сигналами     | Работа<br>Авария                                             | •                       | •                       | •                                                           | •                                                     |
| Другие              | Внешний выходной сигна                        | л при обнаружении аварии                                     | •                       | •                       |                                                             | •                                                     |
| функции             | Принудительное отключе                        | ,                                                            | •                       | •                       | •                                                           | •                                                     |
|                     | Отчет в виде графиков и                       |                                                              | •                       | •                       | •                                                           | •                                                     |
|                     | Управление ВБ без индив                       |                                                              |                         |                         |                                                             | •                                                     |
|                     |                                               | сторонних производителей                                     | _                       | _                       |                                                             |                                                       |
|                     | Прямой выход в Mod Bus                        | сторонных производителей                                     |                         |                         |                                                             |                                                       |



# Интеграция в системы BMS

#### Интеграция в системы BMS по протоколу Modbus



#### Шлюз Modbus HC-A64MB

Шлюз предназначен для интеграции в систему управления зданием (BMS) по протоколу Modbus через RS485 интерфейс. Он позволяет контролировать работу не более 64 внутренних блоков.



#### Интеграция в системы BMS по протоколу KNX



#### Шлюзы KNX HI-AC-KNX-16

Шлюз предназначен для интеграции в систему управления зданием (BMS) по протоколу KNX. Он позволяет контролировать работу не более 16 внутренних блоков.

#### HI-AC-KNX-64

Шлюз предназначен для интеграции в систему управления зданием (BMS) по протоколу KNX. Он позволяет контролировать работу не более 64 внутренних блоков.

# Системы управления (22)

#### Интеграция в системы BMS по протоколу BACnet



#### Шлюзы BACnet HI-AC-BAC-16

Шлюз предназначен для интеграции в систему управления зданием (BMS) по протоколу BACnet. Он позволяет контролировать работу не более 16 внутренних блоков.

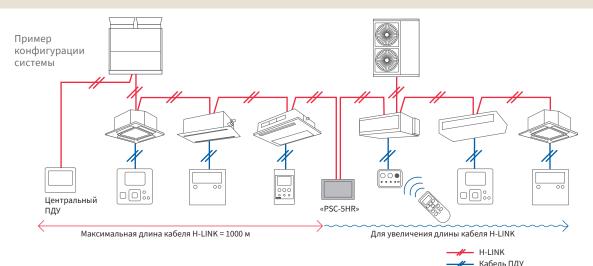


#### HI-AC-BAC-64

Шлюз предназначен для интеграции в систему управления зданием (BMS) по протоколу BACnet. Он позволяет контролировать работу не более 64 внутренних блоков.



#### Интерфейсный модуль PC-AIO2

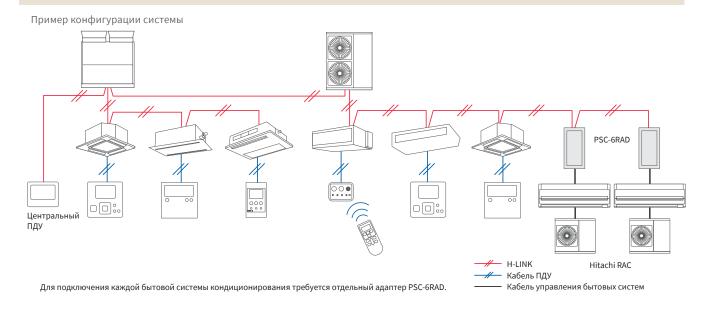

Позволяет интегрировать оборудование стороннего производителя (вентиляторы, приточные установки, насосы и т.д.) с системами кондиционирования Hitachi в компьютерной системе управления CSNET MANAGER 2. Сам модуль PC-AIO2 имеет аналого-цифровые входы и выходы, позволяющие управлять включением/отключением, скоростью вентиляторов, а также использовать внешние сигналы для управления системой кондиционирования.



#### Усилитель сигнала сети H-Link PSC-5HR

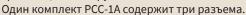
Предназначен для усиления сигнала в сети H-LINK II и устанавливается через каждые 1000 метров, но не более 4 штук подряд. То есть позволяет увеличить межблочную линию до 5 километров.








# Адаптер H-LINK PSC-6RAD для централизованного управления бытовыми кондиционерами


Все внутренние блоки могут быть объединены при помощи адаптера H-Link (PSC-6RAD), через единую шину по протоколу связи, разработанному HITACHI. Благодаря этому устройству блоки бытовых систем совместимы с коммерческими и промышленными установками. Основные функции (включение/выключение, режим работы, установка температуры и т.д.) программируются при помощи системы управления H-Link.





#### Ответная часть разъема РСС-1А

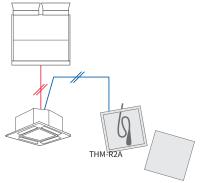
Для осуществления управления посредством «сухого контакта» и снятия сигнала «Авария». Может подключаться к плате управления как внутреннего, так и наружного блоков.







# Выносной датчик температуры воздуха в помещении THM-R2A


Позволяет более точно поддерживать температуру в зоне установки.



При подключении выносного датчика температуры управление работой внутреннего блока осуществляется по среднему значению температуры между температурой воздуха на входе во внутренний блок и температурой, измеренной выносным датчиком.

Не совместим с внутренними блоками настенного типа (RPK).







# HITACHI

# Тепловые насосы Yutaki

Cooling & Heating



Высокоэффективные тепловые насосы Yutaki класса воздух-вода позволяют решать задачи отопления, горячего водоснабжения, обогрева бассейнов, а некоторые модели и кондиционирования.

На вновь проектируемых объектах они могут заменить традиционную систему отопления, а также могут быть интегрированы в существующие системы при их модернизации.

Модельный ряд тепловых насосов Yutaki – один из самых широких на рынке. Модульная система с возможностью дальнейшего расширения, увеличения производительности и роста энергоэффективности прекрасно подойдет для загородных домов. При этом они могут являться источником теплоты для теплых полов, радиаторов и фанкойлов и поддерживают свою работоспособность при температурах наружного воздуха до –25 °C.



# On-line программа подбора систем отопления и ГВС на базе тепловых насосов

Программа Hi-ToolKit for home предназначена для использования техническими специалистами, проектирующими системы отопления на базе тепловых насосов Yutaki S, Yutaki M и Yutampo, как с системой ГВС, так и баз нее

Простота работы с программой позволит правильно подобрать оптимальное оборудование и сформировать индивидуальное предложение для конечного заказчика.

### Пользовательские настройки

- Задание исходных параметров воздуха с поддержкой двухзонного регулирования и компенсацией температуры наружного воздуха.
- Использование стоимости оборудования и аксессуаров для оценки экономической эффективности проекта.
- Задание тарифов на энергоносители, на их подключение с разбивкой по времени суток (электроэнергия, природный газ, дизельное топливо, пеллеты и др.)
- Настройка языка интерфейса и единиц измерения.

# Параметры установки

- Выбор системы по типу использования: только отопление, отопление/кондиционирование, ГВС.
- Выбор резервного бойлера (газ/дизельное топливо/ пилеты и т.д.).
- Задание температурных зон и отопительных доводчиков (радиаторы, фанкойлы, теплые полы и т.д.).

# Расчетные параметры

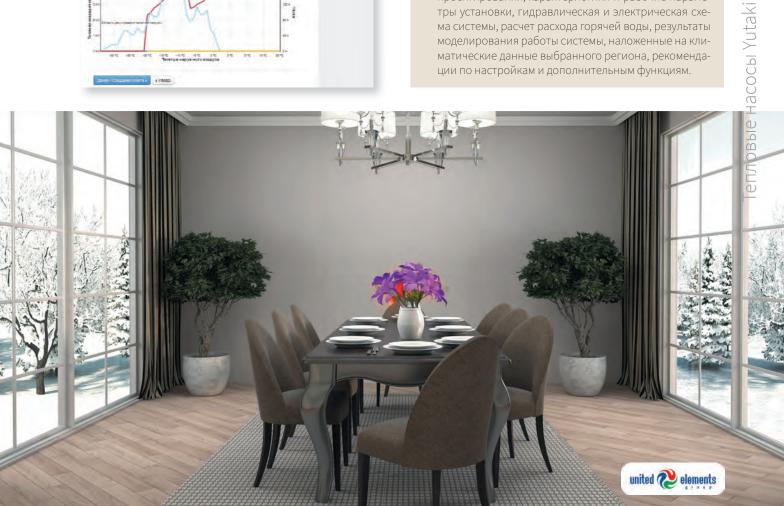
- Выбор местоположения объекта (программа использует статистические данные температурных градаций крупнейших городов России и СНГ).
- Задание периода(ов) эксплуатации, суммарных теплопотерь, процента покрытия ТН, точку бивалентности и температуру теплоносителя и т.д.

### Доступное оборудование

- Выбор модели ТН, дополнительных аксессуаров и бака для ГВС производится из таблиц, предлагаемых программой, удовлетворяющих заданным значениям пользователя.
- Для сравнения приводятся значения эксплуатационных расходов аналогичных систем на природном газе, дизельном топливе и пеллетах.

# Просмотр результатов

- Графики полной и частичной загрузки ТН для отопления и ГВС.
- Месячное распределение загрузки ТН и потребляемой электроэнергии.
- Статистика средних значений температур и температурных градаций для России и СНГ.
- Сравнительные диаграммы эксплуатационных расходов систем отопления с использованием теплового насоса, бойлеров на природном газе, на дизельном топливе и на пеллетах.








# Вывод отчета

■ Выбор данных для отчета: исходные параметры для проектирования, характеристики и рабочие параметры установки, гидравлическая и электрическая схема системы, расчет расхода горячей воды, результаты моделирования работы системы, наложенные на климатические данные выбранного региона, рекомендации по настройкам и дополнительным функциям.



# Инновационные тепловые насосы воздух / вода

# **YUTAKIS**

Номинальная теплопроизводительность от 2 до 10 НР











# YUTAKI S COMBI

Номинальная теплопроизводительность от 2 до 6 НР













# Сплит-системы с выносным баком ГВС

- Нагрев воды до 60 °C при температурах наружного воздуха до -10°C.
- Работа в режиме нагрева при температурах наружного воздуха до -25°C.
- Тепловой коэффициент СОР = 5,25.
- Класс энергоэффективности до A+++.
- Опционально: комплект для работы в режиме охлаждения.

# Сплит-системы со встроенным баком ГВС

- Три схемных решения для производства бытовой горячей воды: со встроенным баком 220 л (тепловой наcoc).
- C баком ГВС тепловой коэффициент COP = 3,2.
- Класс энергоэффективности до А+++.

# Системы управления

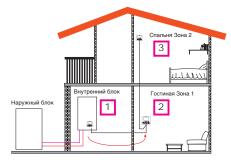
Системы управления тепловыми насосами YUTAKI имеют дружественный интерфейс, универсальны для всех серий S, S Combi, S80, М и разработана таким образом, чтобы максимально упростить процесс монтажа, настройки, пуско-наладки и эксплуатации оборудования.

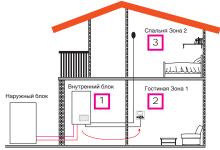
# Контроллер — пульт управления (PC-ARFH2E)

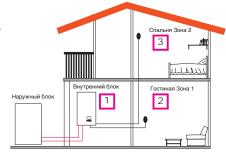
Контроллер представляет собой устройство два-в-одном:

> ✓ системный контроллер — устанавливается на фронтальной панели внутреннего блока и предназначенный для предварительной конфигурации системы отопления, а также для монтажа, пуско-наладки и поиска неисправно-




PC ARFH2E (контроллер)


стей. Контроллер включен в базовую поставку внутренних блоков серии Yutaki S, S Combi и S80 (тип 2).


# Функционал контроллера

- Управление системами отопления, кондиционирования, ГВС, бассейн, солнечные панели и т.д.
- Дружественный интерфейс, интуитивно понятное
- Интеллектуальный помощник(Wizard) упрощающий настройку всей системы.
- Два меню «Пользователь» / «Инженер».
- Режим «Есо» запускает тепловой насос со сниженным энергопотреблением. Активируется нажатием кнопки, либо с помощью программы таймера.
- Настройка цепей входных и выходных сигналов систем управления (локальные пульты, шлюзы в BMS/«Умный дом», WI-FI-адаптер) датчиков температуры, счетчиков, гидроразделителей и т.д.

# Схемы управления с проводным пультом







# YUTAKI M

Номинальная теплопроизводительность от 2 до 6 НР







**A+++** 



YUTAKI S80

Номинальная

от 4 до 6 НР

и S80 COMBI



теплопроизводительность









# Моноблочные системы

- Системы комплектуются насосом, клапаном со встроенным фильтром и расширительным баком.
- Опционально: комплект для работы в режиме охлаж-
- Тепловой коэффициент СОР = 5,25.
- Класс энергоэффективности А+++.
- Холодильный коэффициент до EER = 3,3.
- Возможность подключения баков ГВС объемом 200 л/300 л (нержавеющая сталь).

### Проводной пульт управления

- Помогает добиться высокого уровня комфорта за счет точного поддержания заданной температуры воздуха в поме-
- Отзывчивый интерфейс, интуитивно понятное управление.
- Настройка недельной программы работы, позволяющей выполнить до 5 настроек температуры в день.
- Учет нескольких тарифов на электроэнергию для настройки экономичного энергопотребления.
- Функция «Избранное», когда нажатием одной кнопки активируется одно их запрограммированных действий: режим «ECO» или «Комфорт», «Отпуск», «Простой таймер», «Форсированный режим» или «ГВС».



PC ARFH2E (пульт управления при подключении на сотвествующие клеммы)

- Нагрев воды до 80°C при температурах наружного воздуха до -20°C.
- Доступно две версии гидромодуля: подключение сверху

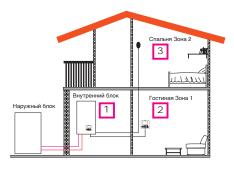
Высокотемпературные сплит-системы

с выносным и встроенным баком ГВС

(S80: отопление + внешний бак ГВС); подключение сзади

(S80 COMBI: отопление + встроенный бак ГВС).

- Обеспечение номинальной производительности при температурах наружного воздуха до -15°C.
- Тепловой коэффициент СОР = 5,00.
- Класс энергоэффективности до А+++.


# Беспроводной пульт управления

- Располагается в любом месте помещения.
- Стильный дизайн, элегантный и простой в управлении.
- Интегрируется в любой интерьер.
- Выбор желаемой температуры путем поворота корпуса по часовой стрелке или против нее.



ATW-RTU-04-07

# Схемы управления с беспроводным пультом



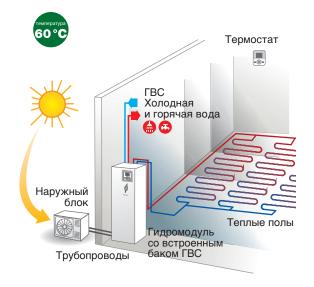






# Инновационные тепловые насосы воздух / вода

|                                |                                                     |                          |                                     |                              | -                               |
|--------------------------------|-----------------------------------------------------|--------------------------|-------------------------------------|------------------------------|---------------------------------|
|                                |                                                     | YUTAKIS                  | YUTAKI S COMBI                      | YUTAKI H                     | YUTAKI H COMBI                  |
| Тиг                            | 1 системы                                           |                          |                                     | системы<br>турного диапазона |                                 |
| Максимальна<br>воды на выхо    | я температура<br>де, °C                             | 60                       | 60                                  | 60                           | 60                              |
| Режимы рабо                    | ты                                                  | Охлаждение<br>+ нагрев   | Охлаждение<br>+ нагрев<br>+ ГВС     | Охлаждение<br>+ нагрев       | Охлаждение<br>+ нагрев<br>+ ГВС |
| Номинальная і<br>(наружный воз | мощность<br>гдух 7 °C / вода 35 °C)                 | ,                        |                                     |                              |                                 |
| 1 л.с.                         | 3,6 кВт                                             | 1 & 3                    | 1 & 3                               | _                            | _                               |
| 2 л.с.                         | 4,3 кВт                                             | 1 & 3                    | 1 & 3                               | -                            | _                               |
| 2,5 л.с.                       | 6 кВт                                               | 1 & 3                    | 1 & 3                               | _                            | -                               |
| 3 л.с.                         | 7,5 кВт                                             | 1 & 3                    | 1 & 3                               | _                            | _                               |
| 4 л.с.                         | 12,5 кВт                                            | 1 & 3                    | 1 & 3                               | 1 & 3                        | 1 & 3                           |
| 5 л.с.                         | 14,5 кВт                                            | 1 & 3                    | 1 & 3                               | 1 & 3                        | 1 & 3                           |
| 6 л.с.                         | 16 кВт                                              | 1 & 3                    | 1 & 3                               | 1 & 3                        | 1 & 3                           |
| 8 л.с.                         | 20 кВт                                              | 3                        | _                                   | 1 & 3                        | 1 & 3                           |
| 10 л.с.                        | 24 кВт                                              | 3                        | _                                   | _                            | _                               |
| Класс сезонн<br>энергоэффек    |                                                     | до А+++                  | до А+++                             | до А+++                      | до А+++                         |
| Резервный на                   | агреватель                                          | 6                        | 9                                   | 0                            | <b>o</b>                        |
| Комплект для<br>в режиме охл   | я работы<br>аждения**                               | 0                        | 0                                   | 0                            | 0                               |
| Блок ГВС                       |                                                     | <b>⊙</b> (200 л / 300 л) | <b>⑤</b> (220 л)                    | ⊙ (200 л / 300 л)            | <b>О</b> (220 л)                |
| Контроллер                     |                                                     | 6                        | 9                                   | 0                            | •                               |
| * — не все мо,  * — со встро   | ально<br>220 В / 1 ф / 50 Гц<br>400 в / 3 ф / 50 Гц | WIZARD                   | Отопление при температурах до –25°C |                              |                                 |


|                                                                                                                                                                           | истемы                                                           | У <b>UТАКІ М</b> Моноблок               | у титакі sso           | YUTAKI S80 COMBI                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|------------------------|-------------------------------------|
| Максимальная<br>воды на выходе                                                                                                                                            | температура                                                      | среднего температурного диапазона<br>60 | 80                     | 80                                  |
| Режимы работь                                                                                                                                                             | ol .                                                             | Охлаждение<br>+ нагрев                  | Нагрев                 | Нагрев<br>+ ГВС                     |
| Номинальная мо<br>(наружный возду                                                                                                                                         | щность<br>xx 7°C / вода 35°C)                                    |                                         |                        |                                     |
| 1 л.с.                                                                                                                                                                    | 3,6 кВт                                                          |                                         |                        |                                     |
| 2 л.с.                                                                                                                                                                    | 4,3 кВт                                                          | п                                       | -                      | -                                   |
| 2,5 л.с.                                                                                                                                                                  | 6 кВт                                                            | -                                       | -                      | -                                   |
| 3 л.с.                                                                                                                                                                    | 7,5 кВт                                                          | 0                                       | _                      | _                                   |
| 4 л.с.                                                                                                                                                                    | 12,5 кВт                                                         | 1 & 3                                   | 1 & 3                  | 1 & 3                               |
| 5 л.с.                                                                                                                                                                    | 14,5 кВт                                                         | 1 & 3                                   | 1 & 3                  | 1 & 3                               |
| 6 л.с.                                                                                                                                                                    | 16 кВт                                                           | 1 & 3                                   | 1 & 3                  | 1 & 3                               |
| 8 л.с.                                                                                                                                                                    | 20 кВт                                                           | _                                       | _                      | -                                   |
| 10 л.с.                                                                                                                                                                   | 24 кВт                                                           | -                                       | -                      | -                                   |
| Класс сезонной энергоэффекти                                                                                                                                              | _                                                                | до А+++                                 | до А+++                | до А+++                             |
| Резервный нагр                                                                                                                                                            | реватель                                                         | 0                                       | 9                      | 6                                   |
| Комплект для р<br>в режиме охлаж                                                                                                                                          | аботы<br>кдения**                                                | •                                       | -                      | -                                   |
| Блок ГВС                                                                                                                                                                  |                                                                  | <b>⊙</b> (200 л/300 л)                  | <b>⊙</b> (200 л/300 л) | <b>⊙</b> (200 л/260 л)              |
| Контроллер                                                                                                                                                                |                                                                  | <b>o</b>                                | •                      | <b>©</b>                            |
| <ul> <li>S — стандарт</li> <li>О — опционалі</li> <li>1 — питание 22</li> <li>3 — питание 44</li> <li>* — не все моде</li> <li>* * — со встроен ром, температу</li> </ul> | 20 В / 1 ф / 50 Гц<br>00 в / 3 ф / 50 Гц<br>ли<br>ным контролле- |                                         | WIZARD                 | Отопление при температурах до –25°C |

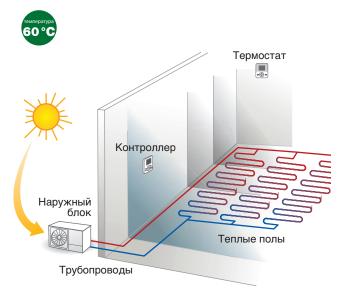


# Отопление, охлаждение и ГВС

# YUTAKI S/H COMBI

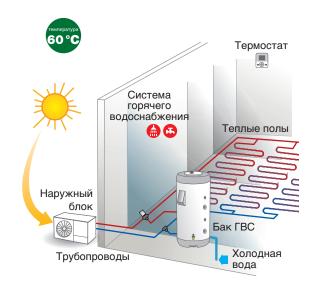
Отопление + ГВС




# YUTAKI S/H

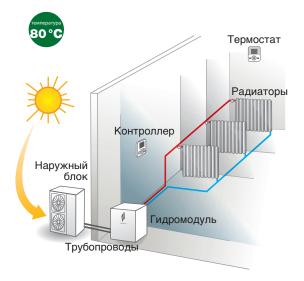
Отопление




# YUTAKI M

Отопление




# YUTAKI M

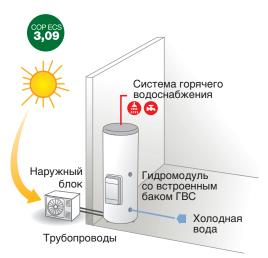
Отопление + ГВС



# YUTAKI S80

Отопление




# YUTAKI S80 COMBI

Отопление + ГВС



# YUTAMPO

ГВС



# YUTAKI S/H + ΓBC

Отопление + бак ГВС (отдельный)





# Универсальные опции для всего модельного ряда Yutaki

Умный дом — это комфорт, экономичность, безопасность, а также система, наделяющая все инженерные системы дома единой логикой функционирования. Для интеграция тепловых насосов Yutaki в систему домашней автоматики Hitachi предлагает шлюзы в протоколы KNX, Modbus и Somfy (TaHoma). С их помощью станут доступны такие параметры управления как независимое ВКЛ/ВЫКЛ всех контуров отопления, ГВС, нагрева бассейна и т.д., их режимы работы и температурные настройки, а также станет доступен контроль текущих статусов, выходных параметров и аварий.







# Преимущества

# Простой монтаж

- Компактные, легкие, оснащенные всеми необходимыми аксессуарами, полностью готовые к монтажу.
- Управление несколькими зонами отопления, ГВС, охлаждение, дополнительный бойлер, бассейн, солнечный коллектор.



на рынке.





Экологичность

Энергоэффективность Согласно ERP директиве Европейского союза, вся продукция выпускаемая в/для Европейского союза маркируется стикером указывающим сезонную энергоэффективность SEER и SCOP. Тепловые насосы НІТАСНІ модельного ряда 2020 имеют максималь-

ные показатели эффективности

Модельный ряд тепловых насосов включает большой ассортимент дополнительных аксессуаров. В их числе датчик температуры воды ATW-WTS-02Y, универсальный для смесительного узла второго контура отопления, накопительного бака ГВС, контура резервного бойлера или для регулирования температуры в плавательном бассейне. Датчик температуры наружного воздуха ATW-2OS-02 потребуется в случае, если штатный датчик, встроенный в наружный блок, подвержен внешнему атмосферному воздействию и имеет большую погрешность в измерениях. Если управление контурами выполняется с контроллера внутреннего блока, то вместо пульта управления (проводного или беспроводного) можно воспользоваться датчиком температуры внутреннего воздуха ATW-ITS-01.







ATW-ITS-01

ATW-20S-02

ATW-WTS-02Y

# Пуско-наладочные работы

- Индикация текущего расхода теплоносителя на дисплее контроллера.
- Интеллектуальный помощник (Wizard) позволяет сконфигурировать и выполнить тестовый запуск системы.



# Техническое и сервисное обслуживание

- Индикация неисправности на дисплее контроллера и сохранение аварий в журнале событий.
- Экономия времени при чистке фильтра, встроенного в шаровой клапан, который входит в заводскую по-
- Простой доступ к узлам системы для проведения ремонтных работ.







A+++













# Yutaki S



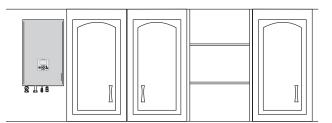


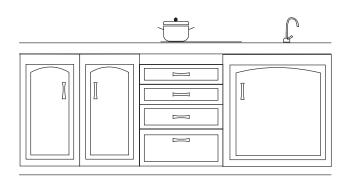
R410A

**R410A** 

Yutaki S medium

Yutaki S big




4,3-6,0-7,5 кВт 11-14-16 кВт

20-24 **kB**T

- Стабильная работа в режиме отопления при температурах наружного воздуха до -25 °C.
- Работа в режиме кондиционирования (доп. опция).
- Производство горячей воды при использовании стандартного внешнего бака ГВС 200 л или 300 л (доп. оп-
- Производительность от 4,3 кВт до 24 кВт.
- Нагрев воды до 60 °C только за счет холодильного контура при температурах наружного воздуха до -10 °C.
- Один из самых высоких COP = 5,25 на рынке.
- Класс сезонной энергетической эффективности в режиме отопления до А+++.
- Низкий уровень шума гидромодуля уровень звуковой мощности 37 дБ(А).
- Компактные модели гидромодулей малой мощности.
- Легкие и компактные наружные блоки.
- Модульная система с возможностью дальнейшего расширения, увеличения производительности и роста энергоэффективности прекрасно подойдет для среднемасштабных объектов.
- Встроенный трехступенчатый электрический нагреватель. Позволяет сохранять производительность на заявленном уровне при низких температурах наружного воздуха в случае моноэнергетических систем отопления и обеспечивает аварийный режим работы.
- Универсальный ЖК-контроллер, с удобной настройкой под любое схемное решение.
- Отображение на контроллере расхода воды в режиме реального времени.
- Насос с переменным расходом и низким энергопотреблением класса А.
- Возможны моновалентные или бивалентные решения с резервным бойлером.
- Идеально подходят для систем отопления как новых, так и реконструируемых объектов.
- Вся линейка сертифицирована Eurovent.





# Yutaki S mini

- Ультра компактное решение.
- Стильный дизайн.
- Минимальная производительность 4,3 кВт: идеально подходит для небольших домов.
- Один из лучших показателей на рынке (СОР = 5,25):
- экономия электроэнергии.



# Внутренние блоки



RWM-2.0R1E RWM-1.5R2E RWM-2.5R1E RWM-2.0R2E RWM-3.0R1E RWM-2.5R2E RWM-3.0R2E



RWM-4.0N1E RWM-5.0N1E RWM-6.0N1E



RWM-8.0N1E RWM-10.0N1E

# Наружные блоки



RAS-2WHVRP1 RAS-1.5WHVRP2E RAS-2WHVRP2E RAS-2.5WHVRP1 RAS-2.5WHVRP2E RAS-3WHVRP1 RAS-3WHVRP2E



RAS-4WH(V)NPE RAS-5WH(V)NPE RAS-6WH(V)NPE RAS-8WHNPE RAS-10WHNPE

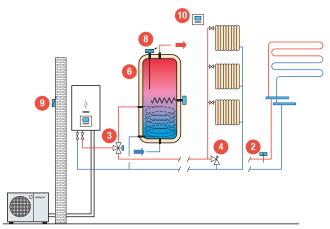
# Гидромодули Yutaki S

|                                                           |        | RWM-<br>2.0R1E   | RWM-<br>2.5R1E   | RWM-<br>3.0R1E   | RWM-<br>4.0N1E   | RWM-<br>5.0N1E                  | RWM-<br>6.0N1E   | RWM-<br>8.0N1E   | RWM-<br>10.0N1E  | RWM-<br>1.5R2E | RWM-<br>2.0R2E | RWM-<br>2.5R2E | RWM-<br>3.0R2E |
|-----------------------------------------------------------|--------|------------------|------------------|------------------|------------------|---------------------------------|------------------|------------------|------------------|----------------|----------------|----------------|----------------|
| Ном. теплопроизводительность<br>(THB: +7 °C; TB: +35 °C)  | кВт    | 4,3              | 6,0              | 8,0              | 11,0             | 14,0                            | 16,0             | 20,0             | 24               | 3,5            | 4,3            | 6,0            | 8,0            |
| Макс. теплопроизводительность (ТНВ: -7 °C; ТВ: +35 °C)    | кВт    | 5,3              | 6,2              | 7,5              | 10,6             | 12,0                            | 13,0             | 17,9             | 21,0             | 6,32           | 6,50           | 8,6            | 11,0           |
| Макс. теплопроизводительность (ТНВ: -7 °C; ТВ: +45 °C)    | кВт    | 4,6              | 5,5              | 6,4              | 10               | 11,6                            | 12,5             | 16,6             | 18,5             | -              | -              | -              | -              |
| Макс. теплопроизводительность (ТНВ: –7 °C; ТВ: +55 °C)    | кВт    | 4,2              | 5                | 5,5              | 9,7              | 11,2                            | 12               | 14,5             | 17,3             | 3,84           | 4,77           | 5,00           | 6,00           |
| Ном./макс. холодопроизвод.<br>(THB: +35 °C; TB: +7 °C)    | кВт    | 3,8/4,9          | 5,0/5,8          | 6,0/7,0          | 7,2/11,8         | 9,5/12,6                        | 10,5/13,5        | 14,0/16,4        | 17,5/20,6        | 3,50/4,69      | 4,00/5,12      | 5,30/6,00      | 6,50/7,00      |
| Ном./макс. холодопроизвод.<br>(THB: +35 °C; TB: +18 °C)   | кВт    | 4,1/6,1          | 5,5/7,4          | 6,0/8,5          | 10,4/15,0        | 12,9/16,0                       | 13,5/17,5        | 17,0/23,5        | 20,0/27,0        | 5,00/6,32      | 5,50/7,02      | 6,30/7,20      | 7,00/9,00      |
| Мощность электронагревателя                               | кВт    | 3 (1/2/3)        | 3 (1/2/3)        | 3 (1/2/3)        | 6 (2/4/6)        | 6 (2/4/6)                       | 6 (2/4/6)        | 9 (3/6/9)        | 9 (3/6/9)        | 3 (1/2/3)      | 3 (1/2/3)      | 3 (1/2/3)      | 3 (1/2/3)      |
| Bec                                                       | КГ     | 35               | 36               | 37               | 54               | 56                              | 56               | 76               | 80               | 3              | 34             | 3              | 6              |
| Габаритные размеры (В $\times$ Д $\times$ Г)              | ММ     | 71               | 2 × 450 × 2      | 75               | 89               | 890 × 520 × 360 890 × 670 × 360 |                  |                  |                  |                | 712 × 4        | 50 × 285       |                |
| Уровень звукового давления <sup>(1)</sup>                 | дБ(А)  |                  | 37               |                  | 47               |                                 |                  |                  | 3                | 37             |                |                |                |
| Объем расширительного бака                                | Л      |                  |                  | (                | 6                |                                 |                  | 1                | 0                | -              | -              | -              | -              |
| Расход воды (мин.–ном.–макс.)                             | м³/ч   | 0,5-0,77-<br>1,9 | 0,6-1,03-<br>2,0 | 0,6-1,29-<br>2,1 | 1,0-1,89-<br>2,9 | 1,1-2,41-<br>3,0                | 1,2-2,75-<br>3,0 | 2,0-3,44-<br>4,5 | 2,2-4,13-<br>4,6 | 0,5            | -2,1           | 0,6-           | -2,5           |
| Минимальный объем воды                                    | Л      | 28               | 28               | 28               | 38               | 46                              | 55               | 76               | 79               | -              | -              | -              | -              |
| Электропитание                                            | В/ф/Гц |                  | 230/1/50         |                  | 230/1            | /50 или 40                      | 0/3/50           | 400/             | 3/50             | :              | 230/1/50 и.    | ли 400/3/5     | )              |
| Максимальный ток $(1\varphi/3\varphi)^{(2)}$              | Α      |                  | 14,5/—           |                  |                  | 29/9,9                          |                  | <b>—/</b> 1      | 14,5             |                | 13,67          | 7/4,96         |                |
| Патрубки гидравлического<br>контура                       | дюйм   |                  | 1                |                  |                  |                                 | 1 1/4            |                  |                  | 1              |                |                |                |
| Температура воды на выходе<br>(нагрев)                    | °C     | +20+55           |                  |                  | +20+60           |                                 |                  | +20+60           | +20+55           |                |                |                |                |
| Температура воды на выходе<br>(охлаждение)                | °C     |                  |                  |                  | +5+22            |                                 |                  | +5+22            |                  |                |                |                |                |
| Макс. температура воды на выходе (нагрев при THB* −10 °C) | °C     | +55              |                  |                  |                  | +60                             |                  |                  | +55              |                |                |                |                |

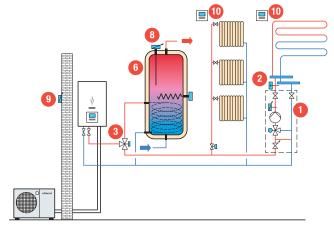
# Наружные блоки

|                                                            |                 | RAS-2.0<br>WHVRP1        | RAS- 2.5<br>WHVRP1            | RAS-3.0<br>WHVRP1 | RAS-4.0<br>WH(V)NPE | RAS-5.0<br>WH(V)NPE           | RAS-6.0<br>WH(V)NPE | RAS-8.0<br>WHNPE | RAS-10.0<br>WHNPE        | RAS-<br>1.5WHVRP2E | RAS-<br>2WHVRP2E        | RAS-<br>2.5WHVRP2E            | RAS-<br>3WHVRP2E |
|------------------------------------------------------------|-----------------|--------------------------|-------------------------------|-------------------|---------------------|-------------------------------|---------------------|------------------|--------------------------|--------------------|-------------------------|-------------------------------|------------------|
| Потр. мощность, нагрев<br>(THB: +7 °C; TB: +35 °C)         | кВт             | 0,82                     | 1,25                          | 1,65              | 2,20                | 2,97                          | 3,50                | 4,65             | 5,59                     | 0,70               | 0,94                    | 1,40                          | 1,63             |
| COP                                                        |                 | 5,25                     | 4,80                          | 4,60              | 5,00                | 4,71                          | 4,57                | 4,30             | 4,29                     | 5,14               | 4,57                    | 4,28                          | 4,60             |
| Потр. мощность, охлаждение<br>(THB: +35 °C; TB: +7 °C)     | кВт             | 1,22                     | 1,59                          | 2,18              | 2,18                | 2,95                          | 3,72                | 4,48             | 4,08                     | 1,30               | 1,52                    | 1,92                          | 2,67             |
| EER                                                        |                 | 4,0                      | 3,60                          | 3,35              | 3,3                 | 3,22                          | 2,82                | 3,12             | 2,81                     | 2,76               | 2,82                    | 3,29                          | 2,80             |
| Уровень звукового давления $^{(1)}$                        | дБ(А)           | 46                       | 47                            | 54                | 49                  | 50                            | 50                  | 59               | 60                       | 44                 | 50                      | 53                            | 53               |
| Расход воздуха                                             | м³/ч            | 2526                     | 2526                          | 2982              | 4800                | 5400                          | 6000                | 7620             | 8040                     | 2754               |                         | 3420                          |                  |
| Габаритные размеры (В $	imes$ Д $	imes$ Г)                 | ММ              | 62                       | 9 × 799 × 3                   | 00                |                     | 138                           | 30 × 950 × 3        | 370              |                          |                    | 628 x 8                 | 82 x 305                      |                  |
| Bec                                                        | КГ              | 4                        | 5                             | 44                |                     | 103                           |                     | 137              | 139                      |                    | 44                      | 4,5                           |                  |
| Электропитание                                             | В/ф/Гц          |                          | 230/1/50                      |                   | 230/1               | /50 или 40                    | 0/3/50              | 400/             | 3/50                     | 230/1/50           |                         |                               |                  |
| Максимальный ток (1 ф / 3 ф)                               | Α               | 10,4/—                   | 12,9/—                        | 15,8/—            | 30/14               | 30/14                         | 30/16               | -,               | /24                      | 12,6               | 12,6                    | 16,5                          | 16,5             |
| Кабель линии межблочной<br>связи                           | MM <sup>2</sup> |                          |                               | 2 >               | < 0,75 экра         | нированн                      | ый                  |                  |                          | 2 ×                | 2 × 0,75 экранированный |                               |                  |
| Диаметр труб хладагента<br>(жидкость – газ)                | дюйм            | 1/4-                     | - <sup>1</sup> / <sub>2</sub> |                   | 3/8-                | - <sup>5</sup> / <sub>8</sub> |                     | 3/8              | -1                       |                    | 1/4                     | - <sup>1</sup> / <sub>2</sub> |                  |
| Длина линии хладагента /<br>Макс. перепад высот            | М               | 50/30                    |                               |                   |                     | 75/30                         |                     |                  | 30/20                    |                    |                         |                               |                  |
| Диапазон рабочих температур<br>(охлаждение / нагрев / ГВС) | °C              | +10+46 / -20+25 / -20+35 |                               |                   |                     | +10+46 / -2525 / -25+35       |                     |                  | +10+46 / -20+25 / -20+35 |                    |                         |                               |                  |
| Хладагент                                                  |                 | R32                      |                               | R410A             |                     |                               | R32                 |                  |                          |                    |                         |                               |                  |
| Тип компрессора                                            |                 |                          |                               |                   |                     | Спиральный                    |                     |                  | Ротационный              |                    |                         |                               |                  |

<sup>(1)</sup> Уровни звукового давления измерены при следующих условиях: на расстоянии 1 метр от передней панели агрегата; шумовые характеристики измерены в безэховой камере.

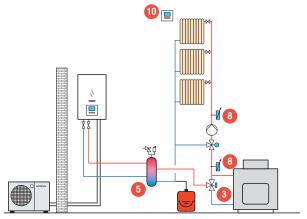

ТНВ: температура наружного воздуха; ТВ: температура воды.



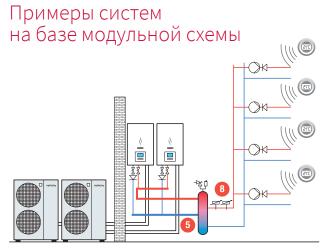

<sup>(2)</sup> Макс. рабочий ток с учетом электрического нагревателя

# Отопление жилых помещений

# Примеры систем на базе Yutaki S




Система отопления, горячего водоснабжения (ГВС) с одним контуром




Система отопления и горячего водоснабжения (ГВС) с двумя контурами

# Примеры систем на базе Yutaki S



Система отопления с одним контуром и резервным бойлером



Модульная система отопления

# Смесительный комплект для контура 2

Предназначен для регулирования температуры в 70/30 контуре 2.

В комплект входят: насос, привод 3-ходового клапана, термодатчик, клапаны.

Версия для настенного монтажа

Арт. ATW-2TK-07



# Предохранительный термостат

При превышении максимальной допустимой температуры на выходе контура в отапливаемой зоне термостат перекрывает циркуляцию воды в контуре.

Apt. ATW-AQT-01



# Трехходовой клапан

Трехходовой клапан с внутренней резьбой и приводом с пружинным возвратом. Напряжение питания 220 В.

. Используется в системах ГВС или системах обо-

Apt. ATW-3WV-01



# Дифференциальный байпасный клапан

Запорный клапан с автоматическим срабатыванием, расходомер 3/4".

Apt. ATW DPOV-01



# Гидравлический разделитель

Предназначен для гидравлического разделения потоков теплового насоса Yutaki S.

- Изготовлен из латуни.
- Четыре стороны подключения и отвода.
- Теплоизоляция в комплекте.

Арт. ATW-HSK-01



### Внешний бак ГВС

Накопительный бак ГВС из нержавеющей стали, универсальный для всех систем YUTAKI на 200 или 300 литров со встроенным электронагревателем 3,0 кВт. Однофазный 230 В, со встроенным датчиком горячей воды.

Apt. DHWT-200S-3.0H2E Арт. DHWT-300S-3.0H2E



8

# Датчик температуры воды

Предназначен для второго контура отопления, бака ГВС, контура доп. бойлера или бассейна.

Apt. ATW-WTS 02Y



# Выносной датчик температуры

Используется для измерения температуры наружного воздуха в месте, удаленном от места установки наружного блока.

Арт. ATW-20S-02



# Контроллеры и пульты управления



# Проводной ПУ

Контроллеры с ЖК-дисплеем, могут использоваться в качестве проводного термостата

Apt. PC-ARFH1E

Арт. PC-ARFH1E-02 Арт. PC-ARFH1E-03

Проводные пульты дистанционного управления для блоков S/SC/M/H/HC

Apt. PC-ARFH1E1

Apt. PC-ARFH1E1-02 Apt. PC-ARFH1E1-03

Проводной комнатный термостат для блоков S,

SC, бак 220 л

Apt. PC-ARFH2E

Компактный проводной комнатный термостат

Apt. PC-ARCHE



# Беспроводной ПУ «ON-OFF»

Комплект для двухпозиционного управления системой, состоящий из пульта управления и при-

Арт. ATW-RTU-04





### Беспроводной ПУ «SMART»

Комплект для плавного регулирования производительности системы, состоящий из пульта управления и приемника сигнала.

Арт. ATW-RTU-07



# Беспроводной ПУ «SMART»

Дополнительный беспроводной пульт управления, работает совместно с ATW-RTU-05, для плавного регулирования производительности, опираясь на значение температуры во второй зоне.

Арт. ATW-RTU-06



# Выносной датчик температуры воздуха

Для настенного монтажа. Измерение температуры воздуха в первой или второй зонах, а также использование в качестве датчика для главного контроллера PC-ARFHE при его парной установке.

Арт. ATW-ITS-01



# Блок реле

Содержит дополнительные реле выходных сигналов: аварийный сигнал; состояние агрегата (вкл./выкл.); работа в режиме охлаждения; сигнал на клапан зонального регулирования.

Арт. ATW-AOS-02



# Шлюз в Somfy (Tahoma)

Для подключения к «Умному дому» по протоколу Somfy® (Tahoma). Для интеграция тепловых насосов Yutaki в систему домашней автоматики.

Apt.: ATW-TAG-02



# Шлюз в KNX

Для подключения к «Умному дому»/BMS по протоколу KNX(EIB). Для интеграция тепловых насосов Yutaki в систему домашней автоматики.

Apt.: ATW-KNX-02





# Шлюз в Modbus

Для подключения к «Умному дому»/BMS по протоколу Modbus. Для интеграция тепловых насосов Yutaki в систему домашней автоматики.

Арт. ATW-MBS-02





### Каскадный контроллер используется для объединения до 8 систем, рабо-

тающих на 1 гидравлический контур. Apt. ATW-YCC-03





Арт. Yutaki S MINI: ATW-CKS-01 Арт. Yutaki S MEDIUM: ATW-CKS-02 Арт. Yutaki S BIG: ATW-CKS-03



# Yutaki S Combi

3,6-6-7,5 кВт 12,5-14,5-16 кВт





RWD-2 0~3 0RW2F-220S









■ Стабильная работа в режиме отопления при температурах наружного воздуха до -25°C.

RAS-4~6WH(V)NPE

- Работа в режиме кондиционирования (доп. опция).
- Производство горячей воды с использованием встроенного бака ГВС из нержавеющей стали 220 л.
- Производительность от 4,3 кВт до 24 кВт.

RAS~1.5-3.0WHVRP2E RAS-2~3WHVRP1

- Нагрев воды до 60 °C только за счет холодильного контура при температурах наружного воздуха до −10°C.
- Один из лучших показателей на рынке: отопление COP = 5,25, FBC COP = 3,4.
- Класс сезонной энергетической эффективности в режиме отопления до А+++, для ГВС А+.
- Низкий уровень шума гидромодуля уровень звуковой мощности 37 дБ(А)
- Компактные модели гидромодулей малой мощности.
- Легкие и компактные наружные блоки.
- Встроенный трехступенчатый электрический нагреватель. Позволяет сохранять производительность на заявленном уровне при низких температурах наружного воздуха в случае моноэнергетических систем отопления и обеспечивает аварийный режим работы.
- Универсальный ЖК-контроллер, с удобной настройкой под любое схемное решение.
- Отображение на контроллере расхода воды в режиме реального времени.

- Насос с переменным расходом и низким энергопотреблением класса А.
- Возможны моновалентные или бивалентные решения с резервным бойлером.
- Идеально подходят для систем отопления как новых, так и реконструируемых объектов.
- Вся линейка сертифицирована Eurovent.



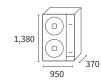
Для размещения оборудования не требуется бойлерная. Гидромодуль может располагаться на кухне или в подсобном помещении.

- \* С баком ГВС и солнечным коллектором.
- \*\* Солнечный коллектор стороннего производства.

### Наружные блоки



RWD-2.0RW1E-220S RWD-2.5RW1E-220S RWD-3.0RW1E-220S RWD-1.5RW2E-220S RWD-2.0RW2E-220S


Внутренние блоки

RWD-2.5RW2E-220S RWD-3.0RW2E-220S RWD-4.0NW1E-220S RWD-5.0NW1E-220S RWD-6.0NW1E-220S



RAS-2WHVRP1 RAS-2.5WHVRP1 RAS-3WHVRP1

RAS-1.5WHVRP2E RAS-2WHVRP2E RAS-2.5WHVRP2E RAS-3WHVRP2E



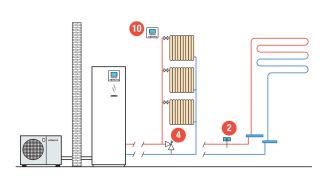
RAS-4WH(V)NPE RAS-5WH(V)NPE RAS-6WH(V)NPE

# Гидромодули Yutaki S Combi

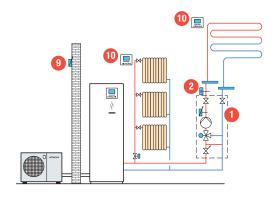
|                                            |                                            |        | RWD-<br>2.0RW1E-<br>220S  | RWD-<br>2.5RW1E-<br>220S | RWD-<br>3.0RW1E-<br>220S | RWD-<br>4.0NW1E-<br>220S | RWD-<br>5.0NW1E-<br>220S | RWD-<br>6.0NW1E-<br>220S | RWD-<br>1.5RW2E-<br>220S | RWD-<br>2.0RW2E-<br>220S | RWD-<br>2.5RW2E-<br>220S | RWD-<br>3.0RW2E-<br>220S |  |  |
|--------------------------------------------|--------------------------------------------|--------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|--|
| Ном. теплопроизво<br>(THB: +7 °C; TB: +35  |                                            | кВт    | 4,3                       | 6                        | 8,0                      | 11                       | 14                       | 16                       | 3,5                      | 4,3                      | 6,0                      | 8,0                      |  |  |
| Макс. теплопроизв<br>(THB: –7 °C; TB: +35  |                                            | кВт    | 5,3                       | 6,2                      | 7,5                      | 10,6                     | 12                       | 13                       | 5,21                     | 5,50                     | 6,20                     | 7,50                     |  |  |
| Макс. теплопроизв<br>(THB: -7 °C; TB: +45  |                                            | кВт    | 4,6                       | 5,5                      | 6,4                      | 10                       | 11,6                     | 12,5                     | -                        |                          |                          |                          |  |  |
| Макс. теплопроизв<br>(THB: –7 °C; TB: +55  |                                            | кВт    | κΒτ 4,2 5 5,5 9,7 11,2 12 |                          | 12                       | 3,84                     | 4,77                     | 5,00                     | 6,00                     |                          |                          |                          |  |  |
| Ном./макс. холодог<br>(THB: +35 °C; TB: +7 |                                            | кВт    | 3,8/4,9                   | 5,0/5,8                  | 6,0/7,0                  | 7,2/11,8                 | 9,5/12,6                 | 10,5/13,5                | 3,50/4,69                | 4,00/5,12                | 63,30/6,00               | 6,50/7,00                |  |  |
| Ном./макс. холодог<br>(THB: +35 °C; TB: +1 |                                            | кВт    | 4,1/6,1                   | 5,5/7,4                  | 6,0/8,5                  | 10,4/15,0                | 12,9/16,0                | 13,5/17,5                | 5,00/6,32                | 5,50/7,02                | 6,30/7,20                | 7,00/9,00                |  |  |
| Мощность электро                           | нагревателя                                | кВт    |                           | 3 (1/2/3)                |                          |                          | 6 (2/4/6)                |                          |                          | 3 (1                     | /2/3)                    |                          |  |  |
| Мощность санитар<br>аварийного электр      |                                            | кВт    |                           |                          | 2                        | ,7                       |                          |                          | -                        |                          |                          |                          |  |  |
| Bec                                        |                                            | КГ     | 1                         | 120 121                  |                          |                          | 12                       | 26                       | 108 110                  |                          |                          |                          |  |  |
| Габаритные размеј                          | ры (В × Д × Г)                             | ММ     |                           |                          | 1750 × 6                 | 00 × 733                 |                          |                          |                          | 1788 × 5                 | 595 × 598                |                          |  |  |
| Уровень звукового                          | давления(1)                                | дБ(А)  |                           | 37                       |                          |                          | 39                       |                          |                          | 4                        | 1                        |                          |  |  |
| Материал бака ГВС                          |                                            |        |                           |                          | Нержавек                 | ощая сталь               |                          |                          |                          |                          |                          |                          |  |  |
| Объем расширител                           | тьного бака                                | Л      |                           |                          |                          | 6                        |                          |                          | -                        |                          |                          |                          |  |  |
| Расход воды (мин./                         | ном./макс.)                                | м³/ч   | 0,5/0,77/1,8              | 0,6/1,03/1,9             | 0,6/1,29/1,9             | 1,0/1,89/2,7             | 1,1/2,41/2,8             | 1,2/2,75/2,8             | -/0,6/-                  | -/0,8/-                  | -/1,0/-                  | -/1,4/-                  |  |  |
| Минимальный объ                            | ем воды                                    | Л      | 28                        | 28                       | 28                       | 38                       | 46                       | 55                       |                          | 2                        | 20                       |                          |  |  |
| Электропитание                             |                                            | В/ф/Гц |                           | 230/1/50                 |                          | 230/                     | 1/50 или 400,            | /3/50                    |                          | 230/1/50 и               | ли 400/3/50              |                          |  |  |
| Максимальный ток                           | (1ф/3ф)(2)                                 | Α      |                           | 27/—                     |                          |                          | 41,5/22,4                |                          |                          | 13,65                    | 5/4,53                   |                          |  |  |
| Патрубки                                   | Нагрева                                    | дюйм   |                           | 1                        |                          |                          | 1 1/4                    |                          |                          |                          | 1                        |                          |  |  |
| гидравлического                            | ГВС                                        | дюйм   |                           |                          | 3                        | /4                       |                          |                          |                          | 3                        | /4                       |                          |  |  |
| контура                                    | Коллектора                                 | дюйм   |                           | 1/2                      |                          |                          |                          |                          |                          | 1                        | /2                       |                          |  |  |
| Температура воды<br>(нагрев)               | Температура воды на выходе<br>(нагрев)     |        |                           | +20+55                   |                          |                          | +20+60                   |                          |                          | +20+60                   |                          |                          |  |  |
| Температура воды<br>(охлаждение)           | Температура воды на выходе (охлаждение) °C |        |                           | +5+22                    |                          |                          |                          |                          |                          |                          | +5+22                    |                          |  |  |
| Температура воды н                         | на выходе (ГВС)                            | °C     |                           |                          | +30.                     | +75                      |                          |                          |                          | +30.                     | +75                      |                          |  |  |
| Максимальная тем<br>на выходе (нагрев      | °C                                         |        | +55                       |                          | +60                      |                          |                          | +55                      |                          |                          |                          |                          |  |  |

# Наружные блоки

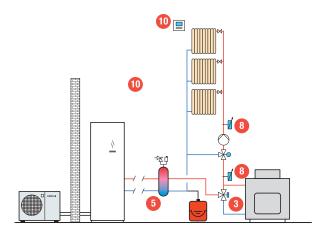
|                                                                         |                 | RAS-<br>2.0WHVRP1 | RAS-<br>2,5WHVRP1                                        | RAS-<br>3.0WHVRP1 | RAS-<br>4.0WH(V)<br>NPE  | RAS-<br>5.0WH(V)<br>NPE | RAS-<br>6.0WH(V)<br>NPE | RAS-<br>1.5WHVRP2E       | RAS-<br>2WHVRP2E | RAS-<br>2.5WHVRP2E | RAS-<br>3WHVRP2E |  |
|-------------------------------------------------------------------------|-----------------|-------------------|----------------------------------------------------------|-------------------|--------------------------|-------------------------|-------------------------|--------------------------|------------------|--------------------|------------------|--|
| Потр. мощность, нагрев<br>(THB: +7 °C; TB: +35 °C)                      | кВт             | 0,82              | 1,25                                                     | 1,65              | 2,20                     | 2,97                    | 3,50                    | 0,70                     | 0,94             | 1,40               | 1,63             |  |
| COP                                                                     |                 | 5,25              | 4,80                                                     | 4,60              | 5,00                     | 4,71                    | 4,57                    | 5,14                     | 4,57             | 4,28               | 4,60             |  |
| Потр. мощность, охлаждение<br>(THB: +35 °C; ТВ: +7 °C)                  | кВт             | 1,22              | 1,59                                                     | 2,18              | 2,18                     | 2,95                    | 3,72                    | 1,30                     | 1,52             | 1,92               | 2,67             |  |
| EER                                                                     |                 | 4,0               | 3,60                                                     | 3,35              | 3,3                      | 3,22                    | 2,82                    | 2,76                     | 2,82             | 3,29               | 2,80             |  |
| Уровень звукового давления <sup>(1)</sup>                               | дБ(А)           | 46                | 47                                                       | 54                | 49                       | 50                      | 50                      | 44                       | 50               | 53                 | 53               |  |
| Расход воздуха                                                          | м³/ч            | 2256              | 2526                                                     | 2982              | 4800                     | 5400                    | 6000                    | 2754                     |                  | 3420               |                  |  |
| Габаритные размеры (В $	imes$ Д $	imes$ Г)                              | ММ              | 6                 | $629 \times 799 \times 300$ $1380 \times 950 \times 370$ |                   |                          |                         | 628 x 8                 | 82 x 305                 |                  |                    |                  |  |
| Масса                                                                   | КГ              | 4                 | 5                                                        | 44                |                          | 103                     |                         |                          | 4                | 4,5                |                  |  |
| Электропитание                                                          | В/ф/Гц          |                   | 230/1/50                                                 |                   | 230                      | /1/ или 400/3           | 3/50                    |                          | 230/1/50         |                    |                  |  |
| Максимальный ток $(1  \varphi  /  3  \varphi)^{\scriptscriptstyle (2)}$ | Α               | 10,4/—            | 12,9/—                                                   | 15,8/—            | 30                       | /14                     | 30/16                   | 12,6                     | 12,6             | 16,5               | 16,5             |  |
| Кабель линии межблочной связи                                           | MM <sup>2</sup> |                   |                                                          | 2 × 0,75 экра     | нированныі               | й                       |                         | 2                        | 2 × 0,75 экра    | нированный         | í                |  |
| Диаметр труб хладагента<br>(жидкость— газ)                              | дюйм            | 1/4-5/8           |                                                          |                   | 3/8-5/8                  |                         |                         | 1/4-1/2                  |                  |                    |                  |  |
| Длина линии хладагента /<br>Максимальный перепад высот                  | М               |                   | 50/30                                                    |                   | 75/30                    |                         |                         | 30/20                    |                  |                    |                  |  |
| Диапазон рабочих температур<br>(охлаждение / нагрев / ГВС)              | °C              | +10+46            | 6 / –20+25 /                                             | -20+35            | +10+46 / -25+25 / -25+35 |                         |                         | +10+46 / -20+25 / -20+35 |                  |                    |                  |  |
| Хладагент                                                               |                 |                   | R32                                                      |                   | R410A                    |                         |                         | R32                      |                  |                    |                  |  |
| Тип компрессора                                                         |                 |                   | Спиральный                                               |                   |                          |                         |                         | Ротационный              |                  |                    |                  |  |


<sup>(1)</sup> Уровни звукового давления измерены при следующих условиях: на расстоянии 1 м от передней панели агрегата; шумовые характеристики измерены в безэховой камере.




<sup>(2)</sup> Макс. рабочий ток с учетом электрического нагревателя

# Отопление жилых помещений


Примеры систем на базе Yutaki S Combi



Система отопления и горячего водоснабжения (ГВС) с одним контуром



Система отопления и горячего водоснабжения (ГВС) с двумя контурами



Система отопления и горячего водоснабжения (ГВС) с одним контуром и резервным бойлером

Apt. PC-ARFH1E Арт. PC-ARFH1E-02 Арт. PC-ARFH1E-03

Проводные пульты дистанционного управления для блоков S/SC/M/H/HC

Apt. PC-ARFH1E1 Apt. PC-ARFH1E1-02 Арт. PC-ARFH1E1-03

Проводной комнатный термостат для блоков S, SC, бак 220 л

Арт. PC-ARFH2E

Компактный проводной комнатный термостат

Apt. PC-ARCHE

Беспроводной ПУ «ON-OFF»

Комплект для двухпозиционного управления системой, состоящий из пульта управления и приемника сигнала.

Apr. ATW-RTU-04



# Беспроводной ПУ «SMART»

Комплект для плавного регулирования производительности системы, состоящий из пульта управления и приемника сигнала.

Арт. ATW-RTU-07



Дополнительный беспроводной пульт управления, работает совместно с ATW-RTU-05, для плавного регулирования производительности, опираясь на значение температуры во второй зоне

Арт. ATW-RTU-06



Для настенного монтажа. Измерение температуры воздуха в первой или второй зонах, а также использование в качестве датчика для главного контроллера PC-ARFHE при его парной установке.

Арт. ATW-ITS-01



Нагрев / Охла

Содержит дополнительные реле выходных сигналов: аварийный сигнал; состояние агрегата (вкл./ выкл.); работа в режиме охлаждения; сигнал на клапан зонального регулирования.

Apt. ATW-AOS-02

# Шлюз в Somfy (Tahoma)

Для подключения к «Умному дому» по протоколу Somfy® (Tahoma). Для интеграция тепловых насосов Yutaki в систему домашней автоматики.

Apt.: ATW-TAG-02

# Шлюз в KNX

Для подключения к «Умному дому»/BMS по протоколу KNX(EIB). Для интеграция тепловых насосов Yutaki в систему домашней автоматики.

Apt.: ATW-KNX-02



# Шлюз в Modbus

Для подключения к «Умному дому»/BMS по протоколу Modbus. Для интеграция тепловых насосов Yutaki в систему домашней автоматики.

Apt. ATW-MBS-02



Комплект для работы в режиме охлаждения

Apt. ATW-CKSC-01

# Смесительный комплект

для контура 2 Предназначен для регулирования температуры в контуре 2.

Дополнительные опции и принадлежности YUTAKI S COMBI

В комплект входят: насос, привод 3-ходового клапана, термодатчик, клапаны.

Версия для настенного монтажа

Арт. ATW-2TK-07 Версия для монтажа внутри модуля Yutaki S Combi 220 л

Арт. ATW-2TK-08

# Предохранительный термостат

При превышении максимальной допустимой температуры на выходе контура в отапливаемой зоне термостат перекрывает циркуляцию воды

Apt. ATW-AQT-01



# Трехходовой клапан

Трехходовой клапан с внутренней резьбой и приводом с пружинным возвратом. Напряжение питания 220 В. . Используется в системах ГВС или системах обогрева бассейнов.

Apt. ATW-3WV-01

# Дифференциальный байпасный клапан

Запорный клапан с автоматическим срабатыванием, расходомер 3/4". Apt. ATW DPOV-01



# Гидравлический разделитель

Предназначен для гидравлического разделения потоков теплового насоса Yutaki S.

- Изготовлен из латуни.
- Четыре стороны подключения и отвода.
- Теплоизоляция в комплекте.

Apt. ATW-HSK-01



# Датчик температуры воды

Предназначен для второго контура отопления, бака ГВС, контура доп. бойлера или бассейна.

Apt. ATW-WTS-02Y



9

# Выносной датчик температуры

Используется для измерения температуры наружного воздуха в месте, удаленном от места установки наружного блока.

Apt. ATW-20S-02







# YUTAKI S80 и S80 COMBI

12,5-14,5-16 кВт

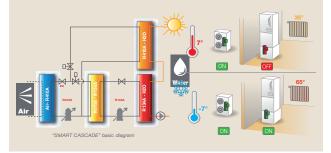






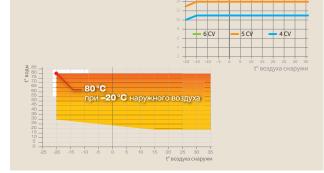







- Стабильная работа в режиме отопления при температурах наружного воздуха до -25 °C.
- Производство горячей воды:
- системы Yutaki S80 с использованием стандартного внешнего бака ГВС 200 л или 300 л (доп. опция),
- системы Yutaki S80 Combi с использованием специально разработанного внешнего бака ГВС 200 л или 260 л (доп. опция) для монтажа на гидромодуле.
- Специальный алгоритм для поддержания температуры воды в бассейне.
- Производительность от 11 кВт до 16 кВт.
- Нагрев воды до +80 °C при температуре наружного воздуха до -20°C без использования дополнительных источников теплоты.

- Алгоритм управления SMART CASCADE повышает эффективность работы теплового насоса.
- Один из самых высоких СОР = 5,0 на рынке.
- Класс сезонной энергетической эффективности в режиме отопления до А+++, ГВС А+.
- Низкий уровень шума наружного блока.
- Универсальный ЖК-контроллер, с удобной настройкой под любое схемное решение.
- Отображение на контроллере расхода воды в режиме реального времени.
- Насос с переменным расходом и низким энергопотреблением класса А.
- Идеально подходят для модернизации старых систем отопления и совместимы с радиаторами любых типов.
- Вся линейка сертифицирована Eurovent.


# Интеллектуальное управление для достижения высокой эффективности при различных условиях работы

Высокотемпературные тепловые насосы Hitachi являются каскадными. В каскадах используются R410A и R134a холодильные агенты. В зависимости от температур наружного воздуха система может использовать второй каскад или отключать его. Кроме того, система осуществляет оптимизацию производительности агрегата и управление циклами оттаивания.



# Постоянная производительность и температура воды на выходе

Тепловые насосы Yutaki S80 обеспечивают максимальный уровень комфорта при любых внешних условиях. Оборудование работает с номинальной производительностью и нагревает воду до +80°C при температуре наружного воздуха до -15°C (без подключение электронагревателя), при этом система работоспособна до -25°C.



# Нагрев и ГВС с внешним баком

- Нагрев воды до 80 °C.
- Yutaki S80:
  - использование системы для ГВС совместно со стандартным внешним баком  $(200/300 \, \pi),$
  - порты для подключения коммуникаций находятся сверху, чтобы монтаж гидромодуля производить как можно ближе к стене.

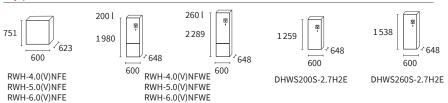


# • Yutaki S80 Combi:

- использование системы для ГВС совместно со специально разработанным внешним баком (200/260 л),
- порты для подключения коммуникаций находятся сзади, чтобы бак ГВС можно было смонтировать на гидромодуле.



# Гидромодули Yutaki S80 и S80 Combi


|                                                                       |        | RWH-4.0VNF(W)E | RWH-5.0VNF(W)E | RWH-6.0VNF(W)E                      | RWH-4.0 NF(W)E            | RWH-5.0NF(W)E | RWH-6.0NF(W)E |  |  |  |  |
|-----------------------------------------------------------------------|--------|----------------|----------------|-------------------------------------|---------------------------|---------------|---------------|--|--|--|--|
| Макс. теплопроизводительность<br>(THB: –7°C; TB: +65°C)               | кВт    | 12,5           | 14,5           | 16                                  | 12,5                      | 14,5          | 16            |  |  |  |  |
| Ном. теплопроизводительность<br>(THB: +7 °C; TB: +35 °C)              | кВт    | 11             | 14             | 16                                  | 11                        | 14            | 16            |  |  |  |  |
| Ном. теплопроизводительность<br>(ТНВ: −7°C; ТВ: +55°C)                | кВт    | 11             | 14             | 16                                  | 11                        | 14            | 16            |  |  |  |  |
| Ном. теплопроизводительность<br>(ТНВ: −7°C; ТВ: +65°C)                | кВт    | 11             | 14             | 16                                  | 11                        | 14            | 16            |  |  |  |  |
| Bec                                                                   | кг     | 143            | 150            | 150                                 | 146                       | 155           | 155           |  |  |  |  |
| Вес накопительного бака<br>(200л/260л) дляS80 Combi                   | КГ     |                |                | 62,                                 | /77                       |               |               |  |  |  |  |
| Габаритные размеры (В × Д × Г)<br>с баком 200 л / 260 л для S80 Combi | ММ     |                |                | 1980×600×648                        | <sup>7</sup> 2289×600×648 |               |               |  |  |  |  |
| Уровень звукового давления <sup>(1)</sup>                             | дБ(А)  | 5              | 7              | 58                                  | 5                         | 7             | 58            |  |  |  |  |
| Объем расширительного бака                                            | л      |                |                | 1                                   | 2                         |               |               |  |  |  |  |
| Расход воды (мин.–ном.–макс.)                                         | м³/ч   | 1,0-1,26-2,8   | 1,1-1,64-3,2   | 1,2-1,83-3,2                        | 1,0-1,26-2,8              | 1,1-1,64-3,2  | 1,2-1,83-3,2  |  |  |  |  |
| Минимальный объем воды                                                | Л      | 40             | 5              | 0                                   | 40                        | 5             | 60            |  |  |  |  |
| Электропитание                                                        | В/ф/Гц |                | 230/1/50       |                                     |                           | 400/3/50      |               |  |  |  |  |
| Максимальный ток                                                      | Α      | 36             | 40             | 43                                  |                           | 22            |               |  |  |  |  |
| Патрубки гидравлического<br>контура нагрева                           | дюйм   |                |                | $1^{1}/_{4}$ — внутр                | енняя резьба              |               |               |  |  |  |  |
| Патрубки гидравлического<br>контура ГВС                               | дюйм   |                |                | <sup>3</sup> / <sub>4</sub> — наруж | кная резьба               |               |               |  |  |  |  |
| Температура воды на выходе<br>(нагрев)                                | °C     |                | +20+80         |                                     |                           |               |               |  |  |  |  |
| Температура воды на выходе (ГВС)                                      | °C     | +30+75         |                |                                     |                           |               |               |  |  |  |  |
| Макс. температура воды на выходе<br>(нагрев) при ТНВ –20°C            | °C     |                |                | +8                                  | 30                        |               |               |  |  |  |  |
| Хладагент                                                             |        |                |                | R13                                 | 34a                       |               |               |  |  |  |  |
| Тип компрессора                                                       |        | Спиральный     |                |                                     |                           |               |               |  |  |  |  |

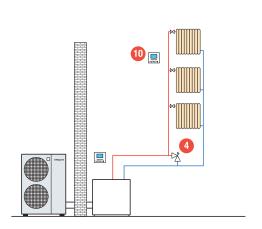
# Наружные блоки

|                                                    |                 | RAS-4.0WHVNPE   | RAS-5.0WHVNPE    | RAS-6.0WHVNPE | RAS-4.0WHNPE                  | RAS-5.0WHNPE | RAS-6.0WHNPE |  |  |
|----------------------------------------------------|-----------------|-----------------|------------------|---------------|-------------------------------|--------------|--------------|--|--|
| Потр. мощность, нагрев<br>(THB: +7 °C; ТВ: +35 °C) | кВт             | 2,20            | 2,97             | 3,50          | 2,20                          | 2,97         | 3,50         |  |  |
| COP                                                |                 | 5,00            | 4,71             | 4,57          | 5,00                          | 4,71         | 4,57         |  |  |
| Уровень звукового давления <sup>(1)</sup>          | дБ(А)           | 49              | 50               | 50            | 49                            | 50           | 50           |  |  |
| Расход воздуха                                     | м³/ч            | 4800            | 5400             | 6000          | 4800                          | 5400         | 6000         |  |  |
| Габаритные размеры (В $	imes$ Д $	imes$ Г)         | ММ              |                 |                  | 1380×9        | 50×370                        |              |              |  |  |
| Масса                                              | КГ              |                 | 103              |               |                               |              |              |  |  |
| Электропитание                                     | В/ф/Гц          |                 | 230/1/50 400/3/5 |               |                               |              |              |  |  |
| Максимальный ток                                   | Α               | 20              | 2                | 25            | 1                             | .4           | 16           |  |  |
| Кабель линии межблочной связи                      | MM <sup>2</sup> |                 |                  | 2×0,75 экран  | нированный                    |              |              |  |  |
| Диаметр труб хладагента<br>(жидкость – газ)        | дюйм            |                 |                  | 3/8           | - <sup>5</sup> / <sub>8</sub> |              |              |  |  |
| Длина линии хладагента /<br>Макс. перепад высот    | М               |                 |                  | 75,           | /30                           |              |              |  |  |
| Диапазон рабочих температур<br>(нагрев / ГВС)      | °C              | -25+25 / -25+35 |                  |               |                               |              |              |  |  |
| Хладагент                                          |                 |                 |                  | R4:           | 10A                           |              |              |  |  |
| Тип компрессора                                    |                 | Спиральный      |                  |               |                               |              |              |  |  |

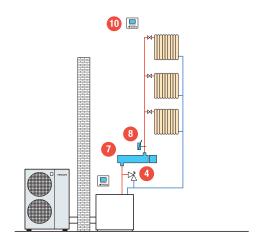
<sup>🗓</sup> Уровни звукового давления измерены при следующих условиях: на расстоянии 1 метр от передней панели агрегата; шумовые характеристики измерены в безэховой

# Внутренние блоки

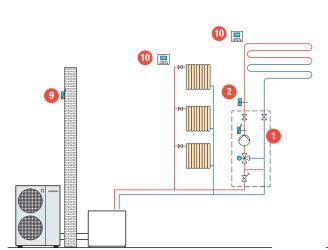




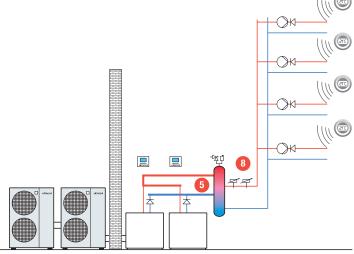




ТНВ: температура наружного воздуха; ТВ: температура воды.

# Отопление жилых помещений


Примеры систем на базе Yutaki S 80




Система отопления с одним контуром



Система отопления с одним контуром



Система отопления с двумя контурами



Модульная система отопления

# Дополнительные опции и принадлежности YUTAKI S 80 и YUTAKI S 80 COMBI



Смесительный комплект для контура 2

Предназначен для регулирования температуры в контуре 2.

В комплект входят: насос, привод 3-ходового клапана, термолатчик, клапаны,

Версия для настенного монтажа Арт. ATW-2TK-07



Предохранительный термостат

При превышении максимальной допустимой температуры на выходе контура в отапливаемой зоне термостат перекрывает циркуляцию воды в контуре.

Apt. ATW-AQT-01



Трехходовой клапан

Трехходовой клапан с внутренней резьбой и приводом с пружинным возвратом. Напряжение питания 220 В. . Используется в системах ГВС или системах обогрева бассейнов.

Apt. ATW-3WV-01



Дифференциальный байпасный клапан

Запорный клапан с автоматическим срабатыванием, расходомер 3/4". **Арт. ATW DPOV-01** 



Гидравлический разделитель

Предназначен для гидравлического разделения потоков теплового насоса Yutaki S.

- Изготовлен из латуни.
- Четыре стороны подключения и отвода.
- Теплоизоляция в комплекте.

Арт. ATW-HSK-01



Внешний бак ГВС

Накопительный бак ГВС из нержавеющей стали, универсальный для всех систем YUTAKI на 200 или 300 литров со встроенным электронагревателем 3,0 кВт. Однофазный 230 В, со встроенным датчиком горячей воды.

Арт. DHWT-200S-3.0H2E Арт. DHWT-300S-3.0H2E



# Проточный нагреватель

- Электронагреватель, мощность 6 кВт одноили трехфазное исполнение
- Три ступени регулирования с шагом 2 кВт.
- Встроенное силовое реле.
- Изолированный корпус из нержавеющей стали.
- Необходимо дооснащение универсальным датчиком температуры ATW-WTS-02Y.

Apt. WEH-6E

9



Датчик температуры воды

Предназначен для второго контура отопления, бака ГВС, контура доп. бойлера или бассейна. Apt. ATW-WTS-02Y



Выносной датчик температуры

Используется для измерения температуры наружного воздуха в месте, удаленном от места установки наружного блока.

Apt. ATW-20S-02



# Контроллеры и пульты управления



Проводной ПУ

Может использоваться в качестве пульта управления совместно с главным контроллером

Арт. PC-ARFH1E





Беспроводной ПУ «ON-OFF»

Комплект для двухпозиционного управления системой, состоящий из пульта управления и приемника сигнала.

Apt. ATW-RTU-04





### Беспроводной ПУ «SMART»

Комплект для плавного регулирования производительности системы, состоящий из пульта управления и приемника сигнала.

Apt. ATW-RTU-07



### Беспроводной ПУ «SMART»

Дополнительный беспроводной пульт управления, работает совместно с ATW-RTU-05, для плавного регулирования производительности, опираясь на значение температуры во второй

Арт. ATW-RTU-06



# Выносной датчик температуры воздуха

Для настенного монтажа. Измерение температуры воздуха в первой или второй зонах, а также использование в качестве датчика для главного контроллера PC-ARFHE при его парной установке

Apt. ATW-ITS-01



### Блок реле

Содержит дополнительные реле выходных сигналов: аварийный сигнал; состояние агрегата (вкл./выкл.); работа в режиме охлаждения; сигнал на клапан зонального регулирования.

Арт. ATW-AOS-02



# Шлюз в Somfy (Tahoma)

Для подключения к «Умному дому» по протоколу Somfy® (Tahoma). Для интеграция тепловых насосов Yutaki в систему домашней автоматики.

Apt.: ATW-TAG-02



# Шлюз в KNX

Для подключения к «Умному дому»/BMS по протоколу KNX(EIB). Для интеграция тепловых насосов Yutaki в систему домашней автоматики..

Apt.: ATW-KNX-02



# Шлюз в Modbus

Для подключения к «Умному дому»/BMS по протоколу Modbus. Для интеграция тепловых насосов Yutaki в систему домашней автоматики.

Apt. ATW-MBS-02





# Накопительный бак для ГВС

Предназначен для установки на гидромодули Yutaki S80 COMBI.

- Нержавеющая сталь для систем Yutaki S80 СОМВІ на 200 или 300 л со встроенным электронагревателем мощностью 2,7 кВт (1 фаза 230 B).
- Со встроенным контроллером PC-ARFH1E.

Арт. DHWS-200S-2.7H2E

Арт. DHWS-260S-2.7H2E

С выносным контроллером PC-ARFH1E

Арт. DHWS-200S-2.7H2E(-W) Арт. DHWS-260S-2.7H2E(-W)



# Yutaki M

# Моноблочные системы для нагрева и охлаждения

4,3-8-11-12-13-16 **кВ**т

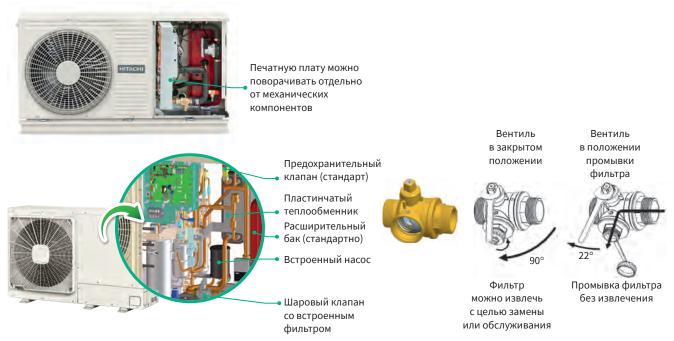













- Стабильная работа в режиме отопления при температурах наружного воздуха до -25 °C.
- Работа в режиме кондиционирования (доп. опция).
- Производство горячей воды при использовании стандартного внешнего бака ГВС 200 л или 300 л (доп. опция).
- Производительность от 7,5 кВт до 18 кВт.
- Нагрев воды до 60 °C только за счет холодильного контура при температурах наружного воздуха до -10 °C
- Один из самых высоких EER и СОР на рынке.
- Класс сезонной энергетической эффективности в режиме отопления до А+++.
- Низкий уровень шума

- Легкие и компактные наружные блоки.
- Универсальный ЖК-контроллер, с удобной настройкой под любое схемное решение.
- Отображение на контроллере расхода воды в режиме реального времени.
- Насос с переменным расходом и низким энергопотреблением класса А.
- Встроенная логика управления для моновалентных или бивалентных решений с резервным бойлером.
- Идеально подходят для систем отопления как новых, так и реконструируемых объектов.
- Вся линейка сертифицирована Eurovent.

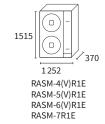
### Конструкция

Моноблок системы Yutaki М включает в себя основные компоненты гидромодулей. Благодаря этому обеспечивается оптимальная производительность и быстрый и простой монтаж.





Шаровый кран имеет встроенный сменный фильтр, с удобным доступом для обслуживания. Данная конструкция имеет очевидные преимущества с точки зрения стоимости, монтажа и пространства, так как традиционно используется три компонента — один фильтр и два запорных клапана.

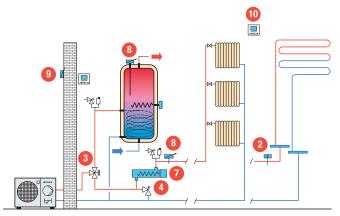

# Наружные блоки Yutaki M

|                                                                      |                 | RASM-2VR(2)E                         | RASM-3VR(2)E     | RASM-4(V)R1E     | RASM-5(V)R1E       | RASM-6(V)R1E   | RASM-7R1E      |  |
|----------------------------------------------------------------------|-----------------|--------------------------------------|------------------|------------------|--------------------|----------------|----------------|--|
| Мин./ном. /макс. теплопроизводительность<br>(THB: +7 °C; TB: +35 °C) | кВт             | 1.83 / 4.3 / 6.5                     | 2.1 / 8 / 11     | 4.3 / 11 / 14    | 4.8 / 12 / 15      | 5.5 / 13 / 16  | 6/16/18        |  |
| Ном./ макс. теплопроизводительность (ТНВ: -7 °C; ТВ: +35 °C)         | кВт             | 4.5 / 5.3                            | 5.8 / 7.5        | 11 / 11          | 12 / 12.5          | 13 / 14        | 16 / 16        |  |
| Ном./макс. теплопроизводительность (ТНВ: -7 °C; ТВ: +55 °C)          | кВт             | 4 / 4.2                              | 5 / 5.5          | 11 / 11          | 12 / 12            | 13 / 13        | 16 / 16        |  |
| Потребляемая мощность, нагрев<br>(THB: +7 °C; TB: +35 °C)            | кВт             | 0,82                                 | 1,74             | 2,34             | 2,66               | 2,89           | 3,62           |  |
| COP                                                                  |                 | 5.25                                 | 4.6              | 4.7              | 4.5                | 4.5            | 4.42           |  |
| Ном./макс. холодопроизводительность (ТНВ: +35 °C; ТВ: +7 °C)         | кВт             | 4/5                                  | 6.5 / 7          | 11 / 12          | 12 / 13            | 13 / 14.7      | 14 / 16        |  |
| Ном./макс. холодопроизводительность (ТНВ: +35°C; ТВ: +18°C)          | кВт             | 5.5 / 6.4                            | 7/9              | 11 / 15          | 12 / 16            | 14 / 17        | 15 / 18        |  |
| Потребляемая мощность, охлаждение (ТНВ: +35 °C; ТВ: +7 °C)           | кВт             | 1,0                                  | 1,94             | 3,26             | 3,64               | 4,04           | 4,43           |  |
| EER                                                                  |                 | 4                                    | 3.35             | 3.37 / 3.32      | 3.30               | 3.22           | 3.16           |  |
| Габаритные размеры (В $	imes$ Д $	imes$ Г)                           | мм              | 704 × 12                             | 48 × 300         |                  | 1515 × 1           | 252 × 370      |                |  |
| Bec                                                                  | КГ              | 76                                   | 78               | 130              | 138                | 138            | 138            |  |
| Электропитание                                                       | В/ф/Гц          | 230/1/50                             |                  | 23               | 30/1/50 или 400/3/ | 50             | 400/3/50       |  |
| Максимальный ток                                                     | Α               | 10,6                                 | 16,0             |                  | 28                 | 8,8            |                |  |
| Уровень звукового давления <sup>1</sup>                              | дБ(А)           | 61                                   | 64               | 61               | 63                 | 63             | 65             |  |
| Объем расширительного бака                                           | Л               |                                      |                  |                  | 6                  |                |                |  |
| Расход воды (мин./ном./макс.)                                        | м³/ч            | 0.5 / 0.77 / 1.9                     | 0.6 / 1.29 / 2.1 | 1.6 / 1.89 / 2.8 | 1.1 / 2.06 / 3     | 1.2 / 2.24 / 3 | 1.2 / 2.75 / 3 |  |
| Минимальный объем воды                                               | Л               | 28                                   | 50               | 55               | 55                 | 65             | 28             |  |
| Патрубки гидравлического контура нагрева                             | дюйм            | :                                    | 1                |                  | 1                  | 1/4            |                |  |
| Мощность электронагревателя (опционально)                            | кВт             |                                      |                  | 6 (3 ı           | шага)              |                |                |  |
| Рабочие диапазоны в режиме охлаждения/<br>обогрева/ ГВС              | °C              | +10~+46 / -20~+25 / -20~35           |                  |                  |                    |                |                |  |
| Макс. температура воды на выходе только в термодинамическом режиме   | °C              | от 60 °C до -5 °C на улице           |                  |                  |                    |                |                |  |
| Диапазон температур воды на выходе (нагрев)                          | °C              |                                      |                  | 20 /             | 60°C               |                |                |  |
| Кабель линии межблочной связи                                        | MM <sup>2</sup> |                                      |                  | 2×0,75 экра      | нированный         |                |                |  |
| Хладагент                                                            |                 |                                      |                  | R                | 32                 |                |                |  |
| Тип компрессора                                                      |                 | Спиральный Роторный Двойной роторный |                  |                  |                    |                |                |  |

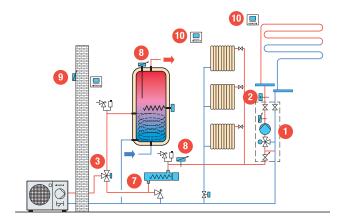
<sup>(1)</sup> Уровни звукового давления измерены при следующих условиях: на расстоянии 1 м от передней панели агрегата; шумовые характеристики измерены в безэховой камере. ТНВ: температура наружного воздуха; ТВ: температура воды.

# Наружные блоки



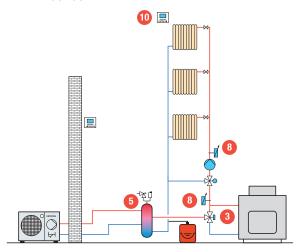






# Отопление жилых помещений

# Примеры систем на базе Yutaki M

# Вновь создаваемые и реконструируеимые объекты




Система отопления и горячего водоснабжения (ГВС) с одним контуром



Система отопления и горячего водоснабжения (ГВС) с двумя контурами

# Реконструируемые объекты



Бивалентная система отопления





# Беспроводной ПУ «ON-OFF»

Комплект для двухпозиционного управления системой, состоящий из пульта управления и приемника сигнала.

Apr. ATW-RTU-04





# Беспроводной ПУ «SMART»

Комплект для плавного регулирования производительности системы, состоящий из пульта управления и приемника сигнала.

Арт. ATW-RTU-07



# Беспроводной ПУ «SMART»

Дополнительный беспроводной пульт управления, работает совместно с ATW-RTU-05, для плавного регулирования производительности, опираясь на значение температуры во второй

Арт. ATW-RTU-06



# Выносной датчик температуры воздуха

Для настенного монтажа. Измерение температуры воздуха в первой или второй зонах, а также использование в качестве датчика для главного контроллера PC-ARFHE при его парной

Арт. ATW-ITS-01



### Блок управления

Выносной дополнительный блок управления со встроенным контроллером PC-ARFH1E.

Apr. ATW-YMM-01



Блок реле Содержит дополнительные реле выходных сигналов: аварийный сигнал; состояние агрегата (вкл./выкл.); работа в режиме охлаждения; сигнал на клапан зонального регулирования. Арт. ATW-AOS-02



Шлюз в Somfy (Tahoma) Для подключения к «Умному дому» по протоколу Somfy® (Tahoma). Для интеграция тепловых наcocoв Yutaki в систему домашней автоматики. Apt.: ATW-TAG-02



### Шлюз в KNX

Для подключения к «Умному дому»/BMS по протоколу KNX(EIB). Для интеграция тепловых насосов Yutaki в систему домашней автоматики..

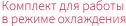
Apt.: ATW-KNX-02





# Шлюз в Modbus

сов Yutaki в систему домашней автоматики.




# Для подключения к «Умному дому»/BMS по про-

токолу Modbus. Для интеграция тепловых насо-Apt. ATW-MBS-02







Арт. Yutaki M ATW-CKM01



# Смесительный комплект для контура 2

Предназначен для регулирования температуры в контуре 2.

Дополнительные опции и принадлежности YUTAKI M

В комплект входят: насос, привод 3-ходового клапана, термодатчик, клапаны.

Версия для настенного монтажа

Арт. ATW-2TK-07



### Предохранительный термостат

При превышении максимальной допустимой температуры на выходе контура в отапливаемой зоне термостат перекрывает циркуляцию воды в контуре.

Арт. ATW-AQT-01



# Трехходовой клапан

Трехходовой клапан с внутренней резьбой и приводом с пружинным возвратом. Напряжение питания 220 В. Используется в системах ГВС или системах обогрева бассейнов.

Арт. ATW-3WV-01



### Дифференциальный байпасный клапан

Запорный клапан с автоматическим срабатыванием, расходомер 3/4". Арт. ATW DPOV-01



6

0

# Гидравлический разделитель

Предназначен для гидравлического разделения потоков теплового насоса Yutaki S.

- Изготовлен из латуни.
- Четыре стороны подключения и отвода
- Теплоизоляция в комплекте.

Арт. ATW-HSK-01



### Внешний бак ГВС ര

Накопительный бак ГВС из нержавеющей стали, универсальный для всех систем YUTAKI на 200 или 300 литров со встроенным электронагревателем 3,0 кВт. Однофазный 230 В, со встроенным датчиком горячей воды.

Арт. DHWT-200S-3.0H2E . Арт. DHWT-300S-3.0H2E



# Проточный нагреватель

- Электронагреватель, мощность 6 кВт одноили трехфазное исполнение.
- Три ступени регулирования с шагом 2 кВт.
- Встроенное силовое реле.
- Изолированный корпус из нержавеющей
- Необходимо дооснащение универсальным датчиком температуры ATW-WTS-02Y.

Apt. WEH-6E



Датчик температуры воды

Предназначен для второго контура отопления, бака ГВС, контура доп. бойлера или бассейна. Арт. ATW-WTS-02Y

9



# Выносной датчик температуры

Используется для измерения температуры наружного воздуха в месте, удаленном от места установки наружного блока. Арт. ATW-20S-02





# Yutaki Hydrosplit

# 11-12-13-16 кВт







RASM-4~7(V)RW1E

- Стабильная работа в режиме отопления при температурах наружного воздуха до -25 °C.
- Производство горячей воды:
- Производительность от 4,3 кВт до 18 кВт.
- Нагрев воды до 60 °C только за счет холодильного контура при температурах наружного воздуха до -10 °C
- Один из самых высоких EER и COP на рынке: отопление COP=4,66, FBC COP=3,4.
- Класс сезонной энергетической эффективности в режиме отопления до А+++, для ГВС А++.
- Дистанционное управление и дистанционное техническое обслуживание.
- Внутренние блоки YUTAKI Н имеет компактные размеры, предназаначен для настенного монтажа, служит для обогрева помещений.
- Внутренние блоки YUTAKI Н Combi выполнен в виде напольного блока. Он предназаначен как для обогрева, так и для приготовления горячей воды дл бытовых нужд. Имеет встроенный резервуар для горячей воды объемом 220 л. Идеально впишется в интерьер дома, благодаря своим небольшим размерам (600 x 600 мм).

- Уровень шума может быть снижен, благодаря ночному режиму, который легко программируется непосредственно на ЖК-контролллере.
- Легкие и компактные наружные блоки.
- Встроенный трехступенчатый электрический нагреватель. Позволяет сохранять производительность на заявленном уровне при низких температурах наружного воздуха в случае моноэнергетических систем отопления и обеспечивает аварийный режим работы.
- Универсальный ЖК-контроллер, с удобной настройкой под любое схемное решение.
- Отображение на контроллере расхода воды в режиме реального времени.
- Насос с переменным расходом и низким энергопотреблением класса А.
- Простая установка. Необходимо выполнить только гидравлические и электрические подключения, не требуется обращение с хладагентом.
- Идеально подходят для систем отопления как новых, так и реконструируемых объектов.
- Вся линейка сертифицирована Eurovent.

# YUTAKI Hydrosplit: Компоненты наружного блока



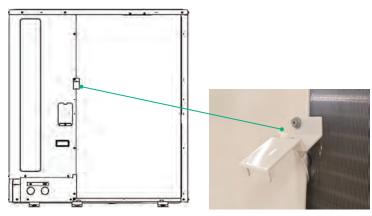
# YUTAKI Hydrosplit: Компоненты внутреннего блока










### Панель управления

- Превосходная производительность
- Улучшенное управление компрессором для более плавной работы
- Сокращение циклов включения / выключения при низкой нагрузке
- Улучшенный контроль испарения
- Оптимизированный контроль замерзания и размораживания
- Датчики давления всасывания и нагнетания
- Расширительный клапан регулируется в зависимости от целевого уровня всасывания



# Шумоизоляция

- Корпус компрессора покрыт 20-миллиметровой звукопоглощающей меламиновой пеной
- Компрессор полностью покрыт звукоизоляционным слоем



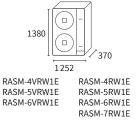
# Регулируемый держатель датчика наружной температуры

■ Держатель наружного датчика температуры теперь имеет 2 отверстия, поэтому его можно легко переключать между «стандартным» и «раздельным» положениями, просто прикрутив к альтернативному отверстию

# Гидромодули Yutaki H и Yutaki H Combi

|                                                                                                |                                   |              |                        | HWI           | D-WE          |               | HWD-WE-220S          |               |               |               |
|------------------------------------------------------------------------------------------------|-----------------------------------|--------------|------------------------|---------------|---------------|---------------|----------------------|---------------|---------------|---------------|
| Электропитание                                                                                 |                                   | В/ф/Гц       |                        | 230/1/50 и.   | пи 400/3/50   | )             |                      | 230/1/50 и    | ли 400/3/50   | )             |
| Уровень шума (мощность звука)                                                                  |                                   | дБ(А)        |                        | 4             | 9             |               |                      | 4             | 19            |               |
| Минимальный расход воды                                                                        |                                   | м³/ч         |                        | 1,2           |               |               | ,2                   |               |               |               |
| Максимальный расход воды                                                                       |                                   | м³/ч         | 3,0                    |               |               | 3,0           |                      |               |               |               |
| Номинальный расход воды                                                                        | THB: +30 °C; TB: +35 °C<br>Δ 5 °C | м³/ч         | 4 л.с.<br>1,9          | 5 л.с.<br>2,1 | 6 л.с.<br>2,3 | 7 л.с.<br>2,8 | 4 л.с.<br>1,9        | 5 л.с.<br>2,1 | 6 л.с.<br>2,3 | 7 л.с.<br>2,8 |
| Кррпус                                                                                         | материал                          |              |                        |               | нная сталь    |               | Оцинкованная сталь   |               |               |               |
|                                                                                                | цвет                              |              | Ч                      | истый бель    | ый (RAL 90:   | LO)           | Ч                    | истый бель    | ый (RAL 901   | .0)           |
|                                                                                                | Высота (с подключениями)          |              |                        | 890           | (960)         |               |                      | 1788          | (1889)        |               |
| Габаритные размеры                                                                             | Ширина                            | ММ           |                        | 5             | 20            |               |                      | 5             | 95            |               |
|                                                                                                | Глубина                           |              |                        | 3             | 70            |               |                      | 5             | 98            |               |
| Вес нетто                                                                                      |                                   | КГ           |                        | 4             | 8             |               |                      | 1             | 13            |               |
|                                                                                                | Тип соединения                    |              | ŗ                      | езьбовое      | соединени     | ie            |                      |               | -             |               |
| Подключение водопроводных                                                                      | Предохранительный клапан          | дюйм         | 2                      | x G 1-1/4"    | (наружны      | й)            | -                    |               |               |               |
| труб                                                                                           | Диаметр впускной трубы            | дюйм         |                        | G 1-1 /4" (в  | нутренний     | i)            | -                    |               |               |               |
|                                                                                                | Диаметр выпускной трубы           | дюйм         | G 1-1 /4" (внутренний) |               |               |               |                      | -             |               |               |
|                                                                                                | Тип соединения                    |              |                        |               | -             |               | ı                    | резьбовое     | соединени     | e             |
| Соединения наружных труб                                                                       | Запорный клапан                   | дюйм         | -                      |               |               | G 1" (H       | аружный)             | - G 1" (нару  | жный)         |               |
| соединения наружных труо                                                                       | Диаметр впускной трубы            | дюйм         |                        |               | -             |               | G 1" (внутренний)    |               |               |               |
|                                                                                                | Диаметр выпускной трубы           | дюйм         |                        |               | -             |               | G 1" (внутренний)    |               |               |               |
|                                                                                                | Тип соединения                    | дюйм         |                        |               | -             |               | резьбовое соединение |               |               |               |
| Подключение труб                                                                               | Запорный клапан                   | дюйм         |                        |               | -             |               | G 1" (H              | іаружный)     | - G 1" (нару  | жный)         |
| нагрева/охлаждения помещений                                                                   | Диаметр впускной трубы            | дюйм         |                        |               | -             |               |                      | G 1" (вну     | тренний)      |               |
|                                                                                                | Диаметр выпускной трубы           | дюйм         |                        |               | -             |               |                      | G 1" (вну     | тренний)      |               |
|                                                                                                | Тип соединения                    |              |                        |               | -             |               | ı                    | резьбовое     | соединени     | е             |
| Подключение труб ГВС                                                                           | Запорный клапан                   | дюйм         |                        |               | -             |               | G 1" (⊢              |               | - G 1" (нару  | жный)         |
| riogiono terme ipyo i zo                                                                       | Диаметр впускной трубы            | дюйм<br>дюйм |                        |               | -             |               |                      | G 3/4" (вн    | утренний)     |               |
| Диаметр выпускной трубы                                                                        |                                   |              |                        |               | -             |               |                      | G 3/4" (вн    | утренний)     |               |
| Макс. длина водяного трубопровода между внутренним блоком и резервуаром для горячей воды (ГВС) |                                   |              |                        | 1             | .0            |               | -                    |               |               |               |
| Макс.я длина водяного трубопровода между внутренним блоком и 3-ходовым клапаном                |                                   |              | 3                      |               |               |               | -                    |               |               |               |
| Макс. длина трубопровода воды м горячего водоснабжения (ГВС) тан                               |                                   | М            | 10                     |               |               | -             |                      |               |               |               |
| Мин. длина водяного трубопровода между наружным и внутренним<br>блоками                        |                                   |              |                        |               | 5             |               |                      |               | 5             |               |

# Наружные блоки


|                                                        |                 | RASM-4VRW1E           | RASM-5VRW1E       | RASM-6VRW1E | RASM-4RW1E | RASM-5RW1E | RASM-6RW1E | RASM-7RW1E |
|--------------------------------------------------------|-----------------|-----------------------|-------------------|-------------|------------|------------|------------|------------|
| Потребляемая мощность, нагрев (THB: +7 °C; TB: +35 °C) | кВт             | 11                    | 12                | 13          | 11         | 12         | 13         | 14         |
| COP                                                    |                 | 4                     | 3.35              | 3.37 / 3.32 | 3.30       | 3.22       |            | 3.16       |
| Уровень звукового давления <sup>1</sup>                | дБ(А)           | 53                    | 54                | 56          | 53         | 54         | 56         | 57         |
| Расход воздуха                                         | м³/ч            | 7920                  | 8280              | 8280        | 7920       | 8280       | 8280       | 8640       |
| Габаритные размеры (В х Д х Г)                         | мм              |                       | 1380 x 1252 x 370 |             |            |            |            |            |
| Bec                                                    | КГ              | 119                   | 126               | 126         | 113        | 127        | 127        | 127        |
| Электропитание                                         | В/ф/Гц          |                       | 230/1/50          |             |            | 400/       | 3/50       |            |
| Максимальный ток                                       | Α               |                       | 41                |             |            | 2          | 3          |            |
| Диапазон рабочих температур (нагрев/ГВС)               | °C              | -25+25 / -25+35       |                   |             |            |            |            |            |
| Кабель линии межблочной связи                          | MM <sup>2</sup> | 2×0,75 экранированный |                   |             |            |            |            |            |
| Хладагент                                              |                 | R32                   |                   |             |            |            |            |            |
| Тип компрессора                                        |                 | Роторный              |                   |             |            |            |            |            |

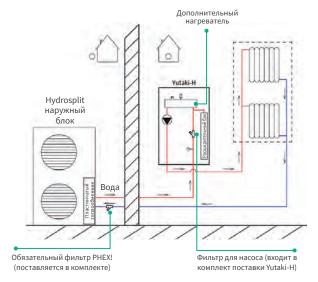
<sup>(</sup>i) Уровни звукового давления измерены при следующих условиях: на расстоянии 1 м от передней панели агрегата; шумовые характеристики измерены в безэховой камере. ТНВ: температура наружного воздуха; ТВ: температура воды.

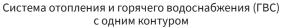
# Наружный блок

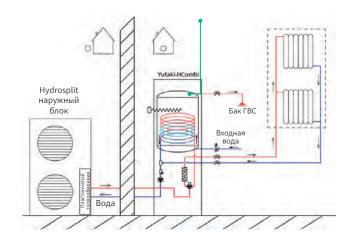
YUTAKI H COMBI (напольный внутренний блок)

YUTAKI H (настенный внутренний блок)






# Отопление жилых помещений

# Примеры систем на базе Yutaki Hydrosplit







Система отопления и горячего водоснабжения (ГВС) с одним контуром

# епловые насосы Yutak

# Дополнительные опции и принадлежности YUTAKI H и YUTAKI H Combi



### Смесительный комплект для контура 2 (встроенный)

Предназначен для регулирования температуры в кон-

В комплект входят: насос, привод 3-ходового клапана, термодатчик, клапаны.

Версия для настенного монтажа Арт. ATW-2TK-07



# Предохранительный термостат

При превышении максимальной допустимой температуры на выходе контура в отапливаемой зоне термостат перекрывает циркуляцию воды в контуре.

Apt. ATW-AQT-01



# Трехходовой клапан

Трехходовой клапан с внутренней резьбой и приводом с пружинным возвратом.

Напряжение питания 220 В.

. Используется в системах ГВС или системах обогрева бассейнов.

Арт. ATW-3WV-01



# Дифференциальный байпасный клапан

Запорный клапан с автоматическим срабатыванием, расходомер 3/4".

Apt. ATW DPOV-01



# Гидравлический разделитель

Предназначен для гидравлического разделения потоков теплового насоса Yutaki S.

- Изготовлен из латуни.
- Четыре стороны подключения и отвода.
- Теплоизоляция в комплекте.

Арт. ATW-HSK-01



### Внешний бак ГВС

Накопительный бак ГВС из нержавеющей стали, универсальный для всех систем YUTAKI на 200 или 300 литров со встроенным электронагревателем 3,0 кВт. Однофазный 230 В, со встроенным датчиком горячей воды.

Арт. DHWT-200S-3.0H2E Арт. DHWT-300S-3.0H2E



Обратный клапан подачи воды



Нагреватель сливного поддона Apt. DH-SP280A



# Передняя панель крышки

Apt. ATW-FCP-03



Комплект для работы в режиме охлаждения Yutaki H

Арт. ATW-CKS-02



Комплект для работы в режиме охлаждения Yutaki H Combi

Арт. ATW-CKSC-02



Комплект для работы в режиме охлаждения Yutaki H Combi

Арт. ATW-CKSC-02 (с дренажным насосом)



### Активный анод

Титановый электрический анод для водонагревателя

Apt. ATW-CP-05



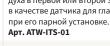
### Датчик температуры воды

Предназначен для второго контура отопления, бака ГВС, контура доп. бойлера или бассейна.

Apt. ATW-WTS-02Y



### Выносной датчик температуры


Используется для измерения температуры наружного воздуха в месте, удаленном от места установки наружного блока.

Арт. ATW-205-02



# Выносной датчик температуры воздуха

Для настенного монтажа. Измерение температуры воздуха в первой или второй зонах, а также использование в качестве датчика для главного контроллера PC-ARFHE



# Контроллеры и пульты управления



# Проводной ПУ

Может использоваться в качестве пульта управления совместно с главным контроллером систем Yutaki.

Apt. PC-ARFH2E



# Шлюз в KNX

Для подключения к «Умному дому»/BMS по протоколу KNX(EIB). Для интеграция тепловых насосов Yutaki в систему домашней автоматики..

Apt.: ATW-KNX-02



### Шлюз в Modbus

Для подключения к «Умному дому»/BMS по протоколу Modbus. Для интеграция тепловых насосов Yutaki в систему домашней автоматики.

Apt. ATW-MBS-02





# Yutampo

Тепловой насос для системы горячего водоснабжения



RAW-35RHC TAW-190RHC TAW-270RHC

- Производство горячей воды при температурах наружного воздуха до –15 °C.
- Быстрый и точный нагрев воды до 55°C только за счет термодинамического цикла при температурах наружного воздуха до –15°C.
- Накопительные баки объемом 190 и 270 л выполнены из нержавеющей стали.
- Один из самых высоких COP = 3,2 на рынке.
- Компактные размеры.
- Максимальная длина трубопровода 20 м.

- Низкий уровень шума.
- Использование возобновляемого источника энергии!
- Идеально подходят для систем ГВС новых объектов.
- Время нагрева воды до 3 часов 15 минут, что позволяет оперативно реагировать на возникновение пиковых нагрузок.
- Управление тепловым насосом Yutampo осуществляется с помощью встроенного пульта управления, стандартного для тепловых насосов Yutaki.





Отопление при температурах до –15°C



# Бак ГВС

|                                             |                             |            | TAW-190RHC   | TAW-270RHC   |
|---------------------------------------------|-----------------------------|------------|--------------|--------------|
| Объем                                       |                             | Л          | 190          | 270          |
| Максимальная температура воды без эл./нагр. |                             | °C         | 53,5         | 53,8         |
| Максимальная т                              | емпература воды с эл./нагр. | °C         | 75           | 75           |
| COP                                         |                             |            | 3,1          | 3,2          |
| Мощность элект                              | ронагревателя               | кВт        | 1,64         | 1,64         |
| Объем воды (ма                              | ксимальный)                 | Л          | 256          | 365          |
| Нагрев воды                                 | Время                       | ч:мин 3:15 |              | 4:50         |
| нагрев воды                                 | Энергопотребление           | кВт/ч      | 4,77         | 5,55         |
| Диапазон регул                              | ирования температуры        | °C         | 30~75        | 30~75        |
| Максимальная длина трубопровода             |                             | М          | 20           | 20           |
| Габаритные размеры (В × Д × Г)              |                             | ММ         | 520×1620×594 | 600×1620×674 |
| Bec                                         |                             | КГ         | 53           | 62           |

# Наружный блок

|                                                 |       | RAW-35RHC |
|-------------------------------------------------|-------|-----------|
| Теплопроизводительность                         | кВт   | 3,5       |
| Диапазон температуры наружного воздуха          | °C    | -15+37    |
| СОР при температуре наружного воздуха +7 °C     |       | 3,09      |
| Максимальная длина линии хладагента             | М     | 20        |
| Перепад высот между наружным блоком и баком ГВС | М     | 10        |
| Хладагент                                       |       | R410A     |
| Уровень звуковой мощности                       | дБ(А) | 63        |





# HITACHI

# Чиллеры

Cooling & Heating

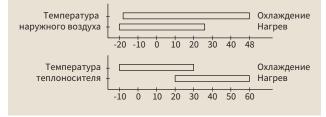


Каждый объект индивидуален и к нему нужен особый подход. Ежедневно инженерам и проектировщикам приходится решать разнообразные задачи, чтобы удовлетворить потребности заказчиков. Именно поэтому мы расширяем линейку чиллеров и коммерческих тепловых насосов Samurai, теперь она включает пять моделей холодопроизводительностью от 11,2 кВт до 254 кВт в одном модуле с возможностью их объединения в более крупные холодильные установки производительностью до 4 МВт. Чиллеры Samurai производятся в нескольких вариантах исполнения — с конденсаторами воздушного охлаждения, водяного охлаждения и с выносным конденсатором.



# Холодильные машины HITACHI

|                                                       |           |             | Но | миналь | ная хол | подог                                   | произво  | одитель  | ность    | , в кВт                                 |             |         |         |           |
|-------------------------------------------------------|-----------|-------------|----|--------|---------|-----------------------------------------|----------|----------|----------|-----------------------------------------|-------------|---------|---------|-----------|
| Samurai S                                             |           |             |    |        |         |                                         |          |          |          |                                         |             |         |         |           |
| 0 -                                                   | 11,2-18,0 |             |    |        |         |                                         |          |          |          |                                         |             |         |         |           |
| Samurai M<br>Тепловой насос                           |           |             |    |        |         | 000000000000000000000000000000000000000 | •••••••• | •••••    | •••••    |                                         | >0000000000 | •••••   | •••••   | 000000000 |
|                                                       |           | 44,8-255,0  |    |        |         |                                         |          | 4080,0   |          |                                         |             |         |         |           |
| Samurai L<br>с водяным<br>охлаждением<br>конденсатора |           | 140,0-250,0 |    |        |         | •                                       |          | 200      | 0,0      | •••••                                   |             |         |         |           |
| Samurai L<br>с выносным<br>конденсатором              |           | 135,0–215,0 |    |        |         |                                         | 17       | 720,0    |          | 000000000000000000000000000000000000000 |             |         |         |           |
|                                                       |           |             |    |        |         |                                         |          | Один мод | <b>,</b> |                                         | Комби       | нация к | иодулей |           |


# Преимущества

#### Модульная конструкция

Благодаря модульной конструкции чиллеры Hitachi идеально подходят для быстрой и компактной установки, когда хладоцентр должен быть адаптирован под доступное пространство. Также модульность позволяет продолжать работу хладоцентра при частичном отказе оборудования. Высокоэффективные установки подстраиваются под температурные условия работы с целью достижения требуемой мощности.

# Широкий температурный диапазон работы

В зависимости от модели холодильные машины могут производить холодную воду в диапазоне температур от -10 до 30 °C и горячую воду в диапазоне температур от 25 до 60 °C. Кроме того, работа установки гарантирована при температуре наружного воздуха от -17.8 до 48 °C при работе врежиме охлаждения и от -20 до 25°C при работе в режиме нагрева, в зависимости от модели.



# Точность управления

Сочетание компрессора с плавным регулированием производительности и уникальной электронной системы управления Hitachi позволяет точно контролировать температуру воды на выходе, независимо от нагрузки охлаждения, что особенно важно в промышленных процессах.



#### Максимум надежности

Чиллеры Hitachi оснащены новейшими технологиями для обеспечения бесперебойной работы и максимальной надежности. Улучшенные функции защиты включают интеллектуальное размораживание, автоматический перезапуск после сбоя питания, защиту от разморозки, автоматический цикл включения / выключения вентилятора для защиты от снега и дистанционное управление аварийными сигналами.



## Samurai S

#### Тепловой насос







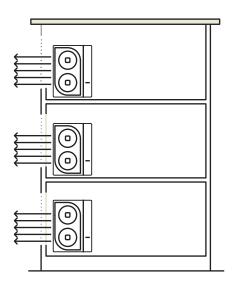






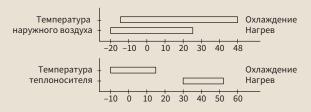


### Модульная конструкция


Возможность объединять до четырех модулей, мощностью по 18 кВт каждый.

#### Встроенный гидромодуль

Насос и реле протока устанавливаются на заводе. Предохранительный клапан, водяной фильтр и автоматический балансировочный клапан поставляются в комплекте и монтируются на объ-


#### Мощные вентиляторы

Напорность вентиляторов может достигать 30 Па, что позволяет уйти от проблемы закольцовывания при поэтажном расположении агрегатов.



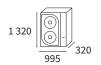
#### Широкий температурный диапазон эксплуатации

Водоохлаждающие машины серии Samurai S идеально подходят для всех климатических условий. Они стабильно и эффективно работают при температурах наружного воздуха до 48°C летом в режиме охлаждения и до -20°C зимой в режиме нагрева. При этом температура теплоносителя может достигать 52°C.



#### Стандартно

Холодильные машины Samurai S могут подключаться к системам BMS по протоколу Modbus через интерфейс RS485.


#### Samurai S RHMA-AVN

| Модели с функцией тепловой насос                 |         | RHMA-4AVN                              | RHMA-5AVN    | RHMA-6AVN       | RHMA-7AVN |  |  |  |
|--------------------------------------------------|---------|----------------------------------------|--------------|-----------------|-----------|--|--|--|
| Режим охлаждение                                 |         |                                        |              |                 |           |  |  |  |
| Номинальная холодопроизводительность             | кВт     | 11,18                                  | 14,26        | 15,95           | 17,80     |  |  |  |
| Потребляемая мощность                            | кВт     | 4,01                                   | 5,28         | 5,74            | 6,95      |  |  |  |
| Коэффициент энергоэффективности EER              |         | 2,79                                   | 2,7          | 2,78            | 2,56      |  |  |  |
| Сезонный коэффициент энергоэффективнос           | ти SEER | 4,05                                   | 4,32         | 4,52            | 4,42      |  |  |  |
| Диапазон рабочих температур наружного<br>воздуха | °C (CT) |                                        | -5.          | +48             |           |  |  |  |
| Диапазон рабочих температур по жидкости          | °C (CT) |                                        | -10.         | +15             |           |  |  |  |
| Режим нагрева                                    |         |                                        |              |                 |           |  |  |  |
| Номинальная теплопроизводительность              | кВт     | 10,94                                  | 13,11        | 15,41           | 18,46     |  |  |  |
| Потребляемая мощность                            | кВт     | 3,65                                   | 4,28         | 4,68            | 6,28      |  |  |  |
| Коэффициент энергоэффекивности СОР               |         | 3,0                                    | 3,06         | 3,29            | 2,94      |  |  |  |
| Сезонный коэффициент энергоэффективнос           | ти SCOP | 3,51                                   | 3,58         | 4,07            | 3,94      |  |  |  |
| Диапазон рабочих температур наружного<br>воздуха | °C (MT) | -20+ 25                                |              |                 |           |  |  |  |
| Диапазон рабочих температур по жидкости          | °C (CT) |                                        | +30.         | +52             |           |  |  |  |
| Характеристики                                   |         |                                        |              |                 |           |  |  |  |
| Уровень звуковой мощности                        | дБ(А)   | 68                                     | -            | 74              |           |  |  |  |
| Расход воздуха                                   | м³/ч    |                                        | 2500-6600    |                 |           |  |  |  |
| Тип компрессора/количество                       |         |                                        | Спиральный [ | ОС Инвертор / 1 |           |  |  |  |
| Тип водяного теплообменника                      |         |                                        | Паяный пл    | астинчатый      |           |  |  |  |
| Номинальный расход: охлаждение                   | л/с     | 0,52                                   | 0,66         | 0,75            | 0,82      |  |  |  |
| Номинальный расход: нагрев                       | л/с     | 0,56                                   | 0,67         | 0,79            | 1,03      |  |  |  |
| Тип насоса                                       |         | Центробежный многоступенчатый          |              |                 |           |  |  |  |
| Номинальный расход воды                          | м³/ч    | 1,9                                    | 2,4          | 2,7             | 3,1       |  |  |  |
| Напор                                            | кПа     | 150                                    | 130          | 120             | 110       |  |  |  |
| Тип двигателя вентилятора                        |         | Бесщеточный двигатель постоянного тока |              |                 |           |  |  |  |
| Количество вентиляторов                          |         | 2                                      |              |                 |           |  |  |  |
| Хладагент                                        |         |                                        | R4           | 10a             |           |  |  |  |
| Заводская заправка                               | КГ      | 2,8                                    | 3,3          | 3,9             | 4,0       |  |  |  |
| Диаметр жидкостных подключений                   | дюйм    |                                        |              | 1               |           |  |  |  |
| Размеры (В×Ш× Г)                                 | ММ      |                                        | 1320×9       | 995×360         |           |  |  |  |
| Эксплуатационный вес                             | КГ      | 126                                    | 128          | 141             | 141       |  |  |  |
| Электрические параметры                          |         |                                        |              |                 |           |  |  |  |
| Электропитание                                   | В/ф/Гц  |                                        | 230          | /1/50           |           |  |  |  |
| Максимальный потребляемый ток                    | Α       | 24                                     | 3            | 33              | 36        |  |  |  |

Значения приведены для номинальных условий.

Значения холодопроизводительности в кВт приведены для температуры воды 12/7 °С и температуры наружного воздуха 35 °С Значения теплопроизводительности в кВт приведены для температуры воды 30/35 °С и температуры наружного воздуха 7 °С.

#### Чиллеры



RHMA4AVN RHMA 5AVN RHMA 6AVN RHMA7AVN



## Samurai M

#### Тепловой насос











RHMA-AX(-V) на хладагенте R454B с улучшенными показателями эффективности.

#### Компактные размеры

Компактные размеры чиллеров Samurai M делают их идеальным вариантом замены практически любого существующего оборудования, для их монтажа нужны достаточно небольшие площади.

#### Свентиляторы

В качестве приводов вентиляторов используются ЕС-двигатели, которые имеют усовершенствованные аэродинамические характеристики, которые позволили улучшить производительность всей системы в целом и снизить уровень шума, особенно при частичных нагрузках.

#### Очень низкий уровень шума

Все модели доступны в «низкошумном» исполнении для оптимального уровня комфорта пользователей.

#### Широкие диапазоны работы

Системы могут работать в режиме охлаждения при температуре наружного воздуха до −17°С и готовить воду температурой до −8°С в стандартном исполнении.

#### Стандартно

Встроенный шлюз Bacnet/Modbus/N2, русифцированный интерфейс, электронно-расширительный вентиль, реле протока, водяной фильтр и т.д.



#### Опции

решетка

конденсатора

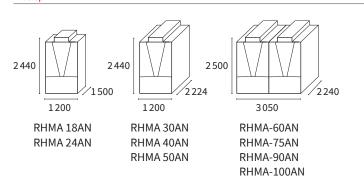


контроллер



виброопоры

1" или 2"

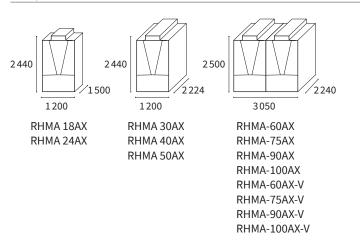



Неопреновые Гидромодуль виброопоры

## Samurai M RHMA-AN

|                                                   |         | RHMA-<br>18AN                                             | RHMA-<br>24AN | RHMA-<br>30AN | RHMA-<br>40AN | RHMA-<br>50AN | RHMA-<br>60AN                  | RHMA-<br>75AN | RHMA-<br>90AN | RHMA-<br>100AN |
|---------------------------------------------------|---------|-----------------------------------------------------------|---------------|---------------|---------------|---------------|--------------------------------|---------------|---------------|----------------|
| Режим охлаждение                                  |         |                                                           |               |               |               |               |                                |               |               |                |
| Номинальная холодопроизводительность              | кВт     | 44,00                                                     | 60,00         | 78,00         | 99,00         | 122,00        | 159,00                         | 188,00        | 221,00        | 254,00         |
| Потребляемая мощность                             | кВт     | 15,49                                                     | 21,51         | 25,08         | 33,00         | 41,36         | 50,96                          | 61,84         | 71,75         | 83,01          |
| Коэффициент энергоэффек-тивности EER              |         | 2,84                                                      | 2,79          | 3,11          | 3,00          | 2,95          | 3,12                           | 3,04          | 3,08          | 3,06           |
| Сезонный коэффициент энергоэффективно             | ти SEER | 4,38                                                      | 4,50          | 4,43          | 4,24          | 4,42          | 4,24                           | 4,28          | 4,17          | 4,34           |
| Диапазон рабочих температур наружного<br>воздуха  | °C (CT) |                                                           |               |               |               | -17,8+48      |                                |               |               |                |
| Диапазон рабочих температур по жидкости           | °C (CT) |                                                           |               |               |               | -8+20         |                                |               |               |                |
| Режим нагрева                                     |         |                                                           |               |               |               |               |                                |               |               |                |
| Номинальная теплопроизводительность               | кВт     | 50,00                                                     | 61,00         | 87,00         | 99,00         | 132,00        | 161,00                         | 191,00        | 231,00        | 254,00         |
| Потребляемая мощность                             | кВт     | 16,39                                                     | 19,87         | 26,93         | 31,73         | 44,44         | 49,39                          | 59,32         | 71,74         | 83,01          |
| Коэффициент энергоэффективности СОР               |         | 3,05                                                      | 3,07          | 3,23          | 3,12          | 2,97          | 3,26                           | 3,22          | 3,22          | 3,06           |
| Сезонный коэффициент энергоэффективно             | ти SCOP | 3,45                                                      | 3,44          | 3,40          | 3,41          | 3,54          | 3,32                           | 3,36          | 3,47          | 3,30           |
| Диапазон рабочих темпера-тур наружного во         | оздуха  |                                                           |               |               |               | -15+25        |                                |               |               |                |
| Диапазон рабочих температур по жидкости           |         |                                                           |               |               |               | +25+55        |                                |               |               |                |
| Характеристики                                    |         |                                                           |               |               |               |               |                                |               |               |                |
| Уровень звуковой мощности: охлаждение             | дБ(А)   | 80                                                        | 82            | 81            | 83            | 84            | 86                             | 87            | 88            | 89             |
| Уровень звуковой мощности: нагрев                 | дБ(А)   | 82                                                        | 84            | 84            | 85            | 89            | 87                             | 88            | 89            | 90             |
| Уровень звукового давления на 10 м:<br>охлаждение | дБ(А)   | 51                                                        | 53            | 52            | 54            | 55            | 57                             | 58            | 59            | 60             |
| Уровень звукового давления на 10 м: нагрев        | дБ(А)   | 53                                                        | 55            | 55            | 56            | 60            | 58                             | 59            | 60            | 61             |
| Тип компрессора                                   |         |                                                           |               | Сп            | иральный С    | С Инвертор    | + Спиральн                     | ый            |               |                |
| Количество компрессоров/контуров                  |         | 2                                                         | /1            | 3/2           | 4/2           | 5/3           | 6                              | /3            | 7/4           | 8/4            |
| Диапазон регулирования<br>производительности      | %       | 33–100                                                    | 25–100        | 20-100        | 15–100        | 12-100        | 10-100                         | 8-100         | 7–100         | 6–100          |
| Тип водяного теплообменника                       |         |                                                           |               |               | Паян          | ый пластин    | чатый                          |               |               |                |
| Номинальный расход                                | л/с     | 2,1                                                       | 2,9           | 3,7           | 4,7           | 5,8           | 7,6                            | 9,0           | 10,6          | 12,1           |
| Жидкостной поток мин/макс                         | л/с     | 1,1-2,8                                                   | 1,4-3,7       | 1,9-5,0       | 2,4-6,2       | 3,0-7,8       | 3,7-11,1                       | 4,5-13,6      | 5,3-15,8      | 6,0-17,9       |
| Падение давления                                  | кПа     | 32                                                        | 25            | 23            | 30            | 36            | 25                             | 32            | 40            | 38             |
| Тип насоса                                        |         | Фиксированная скорость/<br>Насос с регулированием частоты |               |               |               |               | Насос с регулированием частоты |               |               |                |
| Объем воды в агрегате (без к-т насосов)           | л       | 7                                                         | 10            | 14            | 16            | 16            | 27                             | 29            | 32            | 34             |
| Тип двигателя вентилятора                         |         |                                                           |               |               |               | ЕС двигател   | Ь                              |               |               |                |
| Количество вентиляторов                           |         |                                                           | 1             |               | 2             |               | ;                              | 3             | 4             | 4              |
| Хладагент                                         |         |                                                           |               |               |               | R410a         |                                |               |               |                |
| Заводская заправка                                | кг      | 9,5                                                       | 12,3          | 17,6          | 20,5          | 22,8          | 29,5                           | 32,0          | 43,3          | 46,0           |
| Диаметр жидкостных под-ключений                   | дюйм    |                                                           | 2             |               | 2 1/2         |               |                                |               | 4             |                |
| Размеры (B × Ш × Г) (без к-т насосов)             | ММ      | 2                                                         | 440×1200×15   | 500           | 2440×12       | 200×2240      |                                | 2500×30       | 50×2240       |                |
| Эксплуатационный вес (без к-т насосов)            | КГ      | 587                                                       | 610           | 893           | 920           | 999           | 1922                           | 2003          | 2235          | 2316           |
| Электрические параметры                           |         |                                                           |               |               |               |               |                                |               |               |                |
| Электропитание                                    | В/ф/Гц  |                                                           |               |               |               | 400/3/50      |                                |               |               |                |
| Максимальный потребляемый ток                     | А       | 35                                                        | 38            | 61            | 72            | 85            | 119                            | 133           | 166           | 180            |

#### Чиллеры






### Samurai M RHMA-AX

|                                          |        | RHMA-<br>18AX                | RHMA-<br>24AX | RHMA-<br>30AX              | RHMA-<br>40AX                         | RHMA-<br>50AX | RCHMA-<br>60AX                 | RCHMA-<br>75AX | RCHMA-<br>90AX | RCHMA-<br>100AX |
|------------------------------------------|--------|------------------------------|---------------|----------------------------|---------------------------------------|---------------|--------------------------------|----------------|----------------|-----------------|
| Режим охлаждение                         |        |                              |               |                            |                                       |               |                                |                |                |                 |
| Номинальная холодопроизводительность     | кВт    | 43                           | 58            | 76                         | 96                                    | 119           | 155                            | 184            | 216            | 248             |
| Потребляемая мощность                    | кВт    | 14,24                        | 19,73         | 23,17                      | 30,38                                 | 38,14         | 46,97                          | 57,14          | 66,06          | 75,84           |
| Коэффициент энергоэффективности EER      |        | 3,02                         | 2,94          | 3,28                       | 3,16                                  | 3,12          | 3,30                           | 3,22           | 3,27           | 3,27            |
| Режим нагрева                            |        |                              |               |                            |                                       |               |                                |                |                |                 |
| Номинальная теплопроизводительность      | кВт    | 57,00                        | 78,00         | 99,00                      | 126,00                                | 159,00        | 213,00                         | 245,00         | 285,00         | 331,00          |
| Потребляемая мощность                    | кВт    | 15,20                        | 21,10         | 24,20                      | 32,10                                 | 40,80         | 50,30                          | 61,30          | 70,90          | 82,40           |
| Коэффициент энергоэффективности СОР      |        | 3,75                         | 3,69          | 4,09                       | 3,93                                  | 3,89          | 4,23                           | 3,99           | 4,02           | 4,02            |
| Характеристики                           |        |                              |               |                            |                                       |               |                                |                |                |                 |
| Тип компрессора                          |        |                              |               | C                          | тиральный [                           | ОС Инвертор   | + Спиральні                    | ый             |                |                 |
| Тип водяного теплообменника              |        |                              |               |                            | Паян                                  | ый пластин    | чатый                          |                |                |                 |
| Тип насоса                               |        |                              |               | оованная ско<br>гулировани |                                       |               | Насос с регулированием частоты |                |                |                 |
| Тип двигателя вентилятора                |        |                              |               |                            |                                       | ЕС двигател   | ь                              |                |                |                 |
| Количество вентиляторов                  |        |                              | 1             |                            | 2                                     |               |                                | 3              |                | 4               |
| Хладагент                                |        |                              |               |                            |                                       | R454B         |                                |                |                |                 |
| Размеры (В × Ш × Г) (без к-т насосов) мм |        | 2440 × 1200 × 1500 2440 × 12 |               |                            | 2440 × 1200 × 2240 2500 × 3050 × 2240 |               |                                |                |                |                 |
| Электрические параметры                  |        |                              |               |                            |                                       |               |                                |                |                |                 |
| Электропитание                           | В/ф/Гц |                              |               |                            |                                       | 400/3/50      |                                |                |                |                 |
| Максимальный потребляемый ток            | Α      | 35                           | 38            | 61                         | 72                                    | 85            | 119                            | 133            | 166            | 180             |

#### Чиллеры



## Samurai L

# Высокоэффективные чиллеры с водяным охлаждением конденсатора, только охлаждение/тепловой насос

# Постоянный контроль производительности

Система непрерывного контроля производительности Hitachi использует передовые электронные средства управления для позиционирования бесступенчатого золотникового клапана на каждом компрессоре, что обеспечивает точный контроль производительности и температуры охлажденной воды.

#### Компактные размеры

Малые габариты установки — снижение площадей, занимаемых в машинных отделениях. Компрессор расположен в легкодоступном месте для более простого обслуживания.

# Точное поддержание температуры

Сочетание компрессора с плавным регулированием производительности и уникальной электронной системы управления Hitachi позволяет точно контролировать температуру воды на выходе, независимо от нагрузки охлаждения, что особенно важно в промышленных процессах.

#### Двухвинтовой компрессор Hitachi

Плавное регулирование производительности в диапазоне от 25% до 100%, что позволяет максимально соответствовать потребностям объекта.

#### Экономия энергии до 20%

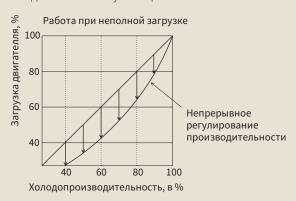
Эксклюзивный контроль производительности обеспечивает экономию энергии в 15–20% по сравнению с системами ступенчатого регулирования. Это исключает частые пуски и остановки компрессора и позволяет достичь высокой эффективности работы при частичной нагрузке.

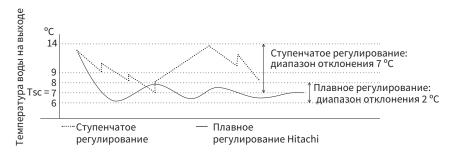










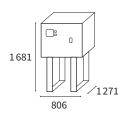




Моноблок среднего температурного диапазона

# Режим работы в режиме теплового насоса (опционально)

Система также может работать как тепловой насос. Для регулирования температуры воды на выходе из конденсатора необходимо использовать дополнительную опцию.








## Samurai L RCME-WH1

|                                                      |                | RCME-40WH1     | RCME-50WH1       | RCME-60WH1      | RCME-70WH1     |  |  |  |
|------------------------------------------------------|----------------|----------------|------------------|-----------------|----------------|--|--|--|
| Режим охлаждение                                     |                |                |                  |                 | ,              |  |  |  |
| Номинальная Холодопроизводительность                 | кВт            | 140,0          | 180,0            | 220,0           | 250,0          |  |  |  |
| Потребляемая мощность                                | кВт            | 28,0           | 36,3             | 45,4            | 51,3           |  |  |  |
| Коэффициент энергоэффективности EER                  |                | 5,00           | 4,96             | 4,85            | 4,87           |  |  |  |
| Сезонный коэффициент энергоэффективно                | сти SEER       | 5,27           | 5,46             | 5,51            | 5,52           |  |  |  |
| Режим нагрева                                        |                |                |                  |                 | ,              |  |  |  |
| Номинальная Теплопроизводительность                  | кВт            | 159,9          | 205,9            | 252,9           | 287,1          |  |  |  |
| Потребляемая мощность                                | кВт            | 33,4           | 43,3             | 54,1            | 61,2           |  |  |  |
| Коэффициент энергоэффективности СОР                  |                | 4,79           | 4,76             | 4,67            | 4,69           |  |  |  |
| Сезонный коэффициент энергоэффективно                | сти SCOP       | 5,90           | 5,86             | 5,75            | 5,78           |  |  |  |
| <b>Диапазон рабочих температур по жидкости для</b> і | конденсатора:  | :              |                  |                 | ,              |  |  |  |
| Охлаждение                                           | °C             |                | +22.             | +50             |                |  |  |  |
| Нагрев (опционально)                                 | °C             |                | +35              | 60              |                |  |  |  |
| Диапазон рабочих температур по жидкости              |                |                |                  |                 |                |  |  |  |
| Охлаждение стандарт                                  | °C             |                | +5               | .+15            |                |  |  |  |
| Охлаждение низкотем.                                 | °C             |                | -10              | +5              |                |  |  |  |
| Охлаждение высокотемп.                               | °C             | +1525          |                  |                 |                |  |  |  |
| Карактеристики                                       |                |                |                  |                 |                |  |  |  |
| Уровень звуковой мощности                            | дБ(А)          | 88             | 89               | 90              | 91             |  |  |  |
| /ровень звукового давления на 10 м                   | дБ(А)          | 60             | 61               | 62              | 63             |  |  |  |
| Гип компрессора/количество                           |                |                | Полугерметичн    | ый винтовой / 1 |                |  |  |  |
| <b>Д</b> иапазон регулир. производ.                  | %              |                | 25-              | -100            |                |  |  |  |
| Тип водяного теплообменника                          |                |                | Паяный пл        | астинчатый      |                |  |  |  |
| Мин. объем воды в системе                            | M <sup>3</sup> | 0,51           | 0,65             | 0,80            | 0,90           |  |  |  |
| Расход жидкости охлаждение<br>мин/ном/макс           | м³/ч           | 15,1/24,1/52,3 | 19,4/31,0/67,3   | 23,7/37,8/82,3  | 26,9/43,0/83,8 |  |  |  |
| Расход жидкости через конденсатор<br>(ном/макс)      | м³/ч           | 28,9/62,8      | 37,2/80,9        | 45,6/83,8       | 51,8/83,8      |  |  |  |
| Кладагент                                            |                |                | R1               | 34A             |                |  |  |  |
| Заводская заправка                                   | КГ             | 19             | 20               | 24              | 29             |  |  |  |
| <b>Диаметр жидкостных подключений</b>                | дюйм           |                | 1                | /2              |                |  |  |  |
| Размеры (B × Ш × Г)                                  | мм             |                | 1681×8           | 06×1271         |                |  |  |  |
| Эксплуатационный вес                                 | КГ             | 860            | 950              | 1040            | 1075           |  |  |  |
| Электрические параметры                              |                |                |                  |                 |                |  |  |  |
|                                                      |                | 400/3/50       |                  |                 |                |  |  |  |
| Электропитание                                       | В/ф/Гц         |                | 400/             | /3/50           |                |  |  |  |
| Электропитание<br>Ток (макс. охлаждение / пусковой)  | В/ф/Гц         | 66,2/179       | 400/<br>84,6/240 | 105/240         | 118/240        |  |  |  |

#### Чиллеры



RCME-40WH1

RCME-50WH1

RCME-60WH1

RCME-70WH1

## Samurai L










### Двухвинтовой компрессор Hitachi

Плавное регулирование производительности в диапазоне от 25% до100%, что позволяет максимально соответствовать потребностям объекта.

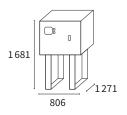
# Точное поддержание температуры

Сочетание компрессора с плавным регулированием производительности и уникальной электронной системы управления Hitachi позволяет точно контролировать температуру воды на выходе, независимо от нагрузки охлаждения, что особенно важно в промышленных процессах.





#### Два режима работы


Стандартные режимы работы системы, настраиваемые с контроллера:

- стандартный;
- высокоэффективный.

#### Меньше сервисное пространство

Компрессор находится в нижней части чиллера, что облегчает его разборку с передней стороны, тем самым необходимое для обслуживания пространство сокращается.

#### Наружные блоки



RHME-40CLH1 RHME-50CLH1 RHME-60CLH1



## Samurai L RCME-CLH1

|                                            |                | RCME-40CLH1    | RCME-50CLH1                  | RCME-60CLH1    |
|--------------------------------------------|----------------|----------------|------------------------------|----------------|
| Номинальная холодопроизводительность       | кВт            | 135,0          | 175,0                        | 215,0          |
| Потребляемая мощность                      | кВт            | 32,0           | 41,8                         | 52,4           |
| Коэффициент энергоэффективности EER        |                | 4,22           | 4,19                         | 4,10           |
| Диапазон температур конденсации            | °C             |                | +30+60                       |                |
| Диапазон рабочих температур по жидкости    |                |                |                              |                |
| Охлаждение стандарт                        | °C             |                | +5+15                        |                |
| Охлаждение низкотем.                       | °C             |                | -5+5                         |                |
| Охлаждение высокотемп.                     | °C             |                | +15+25                       |                |
| Характеристики                             |                |                |                              |                |
| Уровень звуковой мощности                  | дБ(А)          | 88             | 89                           | 90             |
| Уровень звукового давления на 10 м         | дБ(А)          | 60             | 61                           | 62             |
| Тип компрессора/количество                 |                |                | Полугерметичный винтовой / 1 |                |
| Диапазон регулир. производ.                | %              |                | 25-100                       |                |
| Тип водяного теплообменика                 |                |                | Паяный пластинчатый          |                |
| Мин. объем воды в системе                  | M <sup>3</sup> | 0,49           | 0,63                         | 0,78           |
| Расход жидкости охлаждение<br>мин/ном/макс | м³/ч           | 14,5/23,2/50,5 | 18,8/30,1/65,4               | 23,1/37,0/80,4 |
| Хладагент                                  |                |                | R134A                        |                |
| Заводская заправка                         | КГ             |                | 1                            |                |
| Диаметр жидкостных подключений             | дюйм           |                | 1/2                          |                |
| Размеры (B × Ш × Г)                        | мм             |                | 1681×806×1271                |                |
| Эксплуатационный вес                       | КГ             | 765            | 835                          | 900            |
| Электрические параметры                    |                |                |                              |                |
| Электропитание                             | В/ф/Гц         |                | 400/3/50                     |                |
| Ток (макс. охлаждение/ пусковой)           | Α              | 72,7/179       | 92,7/240                     | 116/240        |

## Аксессуары Samurai L

| Название                                                                            | код                                                                                                                      |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Водяной фильтр 6″                                                                   | CHL-WST-05                                                                                                               |
| Шлюз Modbus                                                                         | CHL-MBS-02                                                                                                               |
| Шлюз BACnet                                                                         | CHL-BAC-01                                                                                                               |
| Пружинные виброопоры для чиллеров серии CLH1                                        | CHL-AVS-04                                                                                                               |
| Общий водяной коллектор для объединения<br>двух модулей чиллеров серий WH1 или CLH1 | CHL-CWP-05 для WH1: необходимо два комплекта для каждого модуля;<br>для CLH1: необходим один комплект для каждого модуля |
| Общий водяной коллектор для объединения трех модулей чиллеров серий WH1 или CLH1    | CHL-CWP-06 для WH1: необходимо два комплекта для каждого модуля;<br>для CLH1: необходим один комплект для каждого модуля |
| Пружинные виброопоры для чиллеров серии WH1                                         | CHL-AVS-05                                                                                                               |
| Электросчетчик (200 А)                                                              | CHL-PMM-04                                                                                                               |
| Электросчетчик (400 A)                                                              | CHL-PMM-05                                                                                                               |
| Электросчетчик (1000 A)                                                             | CHL-PMM-06                                                                                                               |

## Опции Samurai L

|                      | Опции Samurai L                                                           | RCME-WH1   | RCME-CLH1  |
|----------------------|---------------------------------------------------------------------------|------------|------------|
|                      | Малошумное исполнение –3 дБ(A)                                            | •          | •          |
|                      | Малошумное исполнение –5 дБ(А)/–6 дБ(А)                                   | •          | •          |
|                      | Силовой распределительный щит без клеммной колодки                        |            |            |
|                      | Силовые распределительные клеммы в шкафу управления                       | •          | •          |
|                      | Деревянная паллета для транспортировки                                    | Стандартно | Стандартно |
|                      | Деревянная обрешетка для транспортировки                                  | •          | •          |
|                      | Дифференциальное реле протока воды                                        | •          | •          |
|                      | Сервисный запорный клапан на линии нагнетания                             | •          | Стандартно |
| Опции<br>холо-       | Сдвоенный предохранительный клапан компрессора                            | •          | •          |
| дильного<br>контура  | Предохранительный клапан на линии всасывания                              | •          | •          |
| Коптура              | Сервисный запорный клапан на линии всасывания                             | •          | •          |
|                      | Частичная рекуперация тепла                                               |            |            |
|                      | Температура хладоносителя на выходе из испарителя (от 5 °С до 0 °С)       | •          | •          |
|                      | Температура хладоносителя на выходе из испарителя (от −1 °C до −5 °C)     | •          | •          |
| Опции                | Температура хладоносителя на выходе из испарителя (от −6°C до −10°C)      | •          | •          |
| гидравли-<br>ческого | Общий коллектор                                                           |            |            |
| контура              | Встроенный гидромодуль с одним насосом, напор до 120 кПа                  |            |            |
|                      | Присоединительные патрубки из нержавеющей стали                           | •          | •          |
|                      | Порты для измерения перепада давления на теплообменнике                   | •          | •          |
|                      | Защитный экран нижней части щита автоматики                               |            |            |
|                      | Поддержание заданного значения температуры воды на выходе из конденсатора | •          |            |
| Опции<br>системы     | Расширение диапазона температур воды на выходе из испарителя до 30 °C     | •          | •          |
| управле-<br>ния      | Магнитные автоматические выключатели                                      | •          | •          |
|                      | Электросчетчик                                                            | •          | •          |
|                      | Нагреватель испарителя                                                    |            | •          |







#### **Hitachi Air Conditioning**

Данный документ тщательно подготовлен, соответствует уровню наших знаний и содержит только информацию, являющуюся собственностью нашей компании.

Компания не гарантирует полноту и точность приведенной информации, а также надежность продукции и ее пригодность к эксплуатации в случае использования оборудования не по назначению. Состав и технические характеристики оборудования могут быть изменены без предварительного уведомления. Компания не несет ответственности за прямой или косвенный ущерб, полученный в результате использования данных, содержащихся в данном документе.



Тел./факс (495) 790-74-34 197110, Санкт-Петербург, ул. Б.Разночинная, д. 32 Тел. (812) 718-55-11. Факс (812) 718-55-17









ная информация действительна на сентябрь 2024 г.